1 |
JAMESON A, BAKER T J. Solution of the Euler equations for complex configurations[C]∥ 6th Computational Fluid Dynamics Conference Danvers. Reston: AIAA, 1983.
|
2 |
GHIA U, GHIA N K, SHIN T C, et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3): 387-411.
|
3 |
JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥ 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
|
4 |
TURKEL E. Preconditioned methods for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics, 1987, 72(2): 277-298.
|
5 |
WYNN P. Acceleration techniques for iterated vector and matrix problems[J]. Mathematics of Computation,1962, 16(79): 301-322.
|
6 |
BREZINSKI C. Generalisations de la transformation de shanks,de la table de Pade et de l'ε-algorithme[J]. Calcolo, 1975, 12(4): 317-360.
|
7 |
CABAY S, JACKSON L W. A polynomial extrapolation method for finding limits and antilimits of vector sequences[J]. SIAM Journal on Numerical Analysis, 1976,13(5): 734-752.
|
8 |
EDDY R P. Extrapolating to the limit of a vector sequence[J]. Information Linkage Between Applied Mathematics and Industry, 1979: 387-396.
|
9 |
MESINA M. Convergence acceleration for the iterative solution of the equations X=AX+f[J]. Computer Methods in Applied Mechanics and Engineering, 1977, 10(2): 165-173.
|
10 |
SMITH D A, FORD W F, SIDI A. Extrapolation methods for vector sequences[J]. SIAM Review, 1987, 29(2): 199-233.
|
11 |
SIDI A. Review of two vector extrapolation methods of polynomial type with applications to large-scale problems[J]. Journal of Computational Science, 2012, 3(3): 92-101.
|
12 |
ARNOLDI W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1): 17-19.
|
13 |
SAAD Y, SCHULTZ M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
|
14 |
HAFEZ M, PARLETTE E, SALAS M. Convergence acceleration of iterative solutions of Euler equations for transonic flow computations[J]. Computational Mechanics, 1986, 1(3): 165-176.
|
15 |
DJEDDI R, KAMINSKY A, EKICI K. Convergence acceleration of fluid dynamics solvers using a reduced-order model[J]. AIAA Journal, 2017,55(9): 3059-3071.
|
16 |
SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010, 656: 5-28.
|
17 |
SCHMID P J, LI L, JUNIPER M P,et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011,25(1): 249-259.
|
18 |
LIU Y, WANG G, YE Z Y. Dynamic mode extrapolation to improve the efficiency of dual time stepping method[J]. Journal of Computational Physics, 2018, 352:190-212.
|
19 |
ANDERSSON N. A non-intrusive acceleration technique for compressible flow solvers based on dynamic mode decomposition[J]. Computers & Fluids, 2016, 133: 32-42.
|
20 |
LIU Y, ZHANG W, KOU J. Mode multigrid-a novel convergence acceleration method[J]. Aerospace Science and Technology, 2019, 92: 605-619.
|
21 |
TAN S L, LIU Y L, KOU J Q, et al. Improved mode multigrid method for accelerating turbulence flows[J]. AIAA Journal, 2021, 59(8): 3012-3024.
|
22 |
LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117.
|
23 |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539-575.
|
24 |
HALL K C, THOMAS J P, DOWELL E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal, 2000, 38(10): 1853-1862.
|
25 |
DOWELL E H, THOMAS J P, HALL K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models[J]. Journal of Fluids and Structures, 2004,19(1): 17-27.
|
26 |
LUCIA D J, BERAN P S, KING P I. Reduced-order modeling of an elastic panel in transonic flow[J]. Journal of Aircraft, 2003, 40(2): 338-347.
|
27 |
MARKOVINOVIĆ R, JANSEN J D. Accelerating iterative solution methods using reduced-order models as solution predictors[J]. International Journal for Numerical Methods in Engineering, 2006, 68(5): 525-541.
|
28 |
TROMEUR-DERVOUT D, Vassilevski Y. POD acceleration of fully implicit solver for unsteady nonlinear flows and its application on grid architecture[J]. Advances in Engineering Software, 2007, 38(5): 301-311.
|
29 |
GRINBERG L, KARNIADAKIS G E. Extrapolation-based acceleration of iterative solvers: Application to simulation of 3D flows[J]. Communications in Computational Physics, 2011, 9(3): 607-626.
|
30 |
RAPÚN M L, VEGA J M. Reduced order models based on local POD plus Galerkin projection[J]. Journal of Computational Physics, 2010, 229(8): 3046-3063.
|
31 |
CLAINCHE L S, VARAS F, Francisco J H V, et al. Accelerating oil reservoir simulations using POD on the fly[J]. International Journal for Numerical Methods in Engineering, 2017, 110(1): 79-100.
|
32 |
TERRAGNI F, VALERO E, VEGA J M. Local POD plus Galerkin projection in the unsteady lid-driven cavity problem[J]. SIAM Journal on Scientific Computing, 2011,33(6): 3538-3561.
|
33 |
RAPÚN M L, TERRAGNI F, VEGA J M. Adaptive POD-based low-dimensional modeling supported by residual estimates[J]. International Journal for Numerical Methods in Engineering, 2015, 104(9): 844-868.
|
34 |
TERRAGNI F, VEGA J M. Construction of bifurcation diagrams using POD on the fly[J]. SIAM Journal on Applied Dynamical Systems, 2014, 13(1): 339-365.
|
35 |
BERGMANN M, BRUNEAU C H, IOLLO A. Enablers for robust POD models[J]. Journal of Computational Physics, 2009, 228(2): 516-538.
|
36 |
BALAJEWICZ M, DOWELL E H. Stabilization of projection-based reduced order models of the Navier-Stokes[J]. Nonlinear Dynamics,2012, 70(2): 1619-1632.
|