[1] PACEJKA H. The wheel shimmy phenomenon:A theoretical and experimental investigation with particular reference to the non-linear problem[D]. Delft:Delft University of Technology, 1966. [2] DUTTA S, CHOI S B. Control of a shimmy vibration in vehicle steering system using a magneto rheological damper[J]. Journal of Vibration and Control, 2018, 24(4):797-807. [3] 祝世兴, 付一博. 新型磁流变减摆器节流孔流场分析[J]. 航空工程进展, 2021, 12(1):104-112. ZHU S X, FU Y B. Flow field analysis of throttling aperture of a new magneto-rheological shimmy damper[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1):104-112(in Chinese). [4] 祝世兴, 刘秀. 飞机前起落架磁流变液减摆器设计与性能分析[J]. 机床与液压, 2019, 47(2):65-68, 98. ZHU S X, LIU X. Design and performance analysis of magnetorheological fluid shimmy damper for aircraft nose landing gear[J]. Machine Tool & Hydraulics, 2019, 47(2):65-68, 98(in Chinese). [5] 祝世兴, 杨云鹏. 飞机起落架磁流变减摆器的设计流程[J]. 液压与气动, 2016(10):67-74. ZHU S X, YANG Y P. Design process of aircraft landing gear shimmy dampers based on magnetorheological fluid[J]. Chinese Hydraulics & Pneumatics, 2016(10):67-74(in Chinese). [6] KRVGER W R, MORANDINI M. Recent developments at the numerical simulation of landing gear dynamics[J]. CEAS Aeronautical Journal, 2011, 1(1-4):55-68. [7] PRITCHARD J. Overview of landing gear dynamics[J]. Journal of Aircraft, 2001, 38(1):130-137. [8] SOMIESKI G. Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods[J]. Aerospace Science and Technology, 1997, 1(8):545-555. [9] CURREY N S. Aircraft landing gear design:Principles and practices[M]. Reston:AIAA, 1988. [10] GROSSMAN D T. F-15 nose landing gear shimmy, taxi test and correlative analyses[C]//SAE Technical Paper Series. Warrendale:SAE International, 1980:3781-3791. [11] 周福亮. 飞机起落架摆振稳定性仿真分析研究[D]. 南京:南京航空航天大学, 2008. ZHOU F L. Study on the shimmy stability of aircraft landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). [12] SAE Aerospace.Landing gear stability:SAE AIR 4894-1995[S]. Warrendale:SAE International,1995. [13] 国防科学技术工业委员会.飞机前轮摆振试验要求:GJB 8610-2015[S] 北京:国防科学技术工业委员会,2015. National Defense Science, Technology and Industry Commission. Requirements for aircraft front wheel shimmy test:GJB 8610-2015[S] Beijing:National Defense Science, Technology and Industry Commission,2015(in Chinese). [14] 中国民用航空局.运输类飞机适航标准:CCAR 25[S] 北京:中国民用航空局,2015. Civil Aviation Administration of China. Airworthiness standard for transport aircraft:CCAR 25[S] Beijing:Civil Aviation Administration of China,2015(in Chinese). [15] 国防科学技术工业委员会.飞机前起落架防摆设计要求:GJB 5097-2002[S].北京:国防科学技术工业委员会,2002. National Defense Science, Technology and Industry Commission. Design requirements for anti swing of aircraft nose landing gear:GJB 5097-2002[S].Beijing:National Defense Science, Technology and Industry Commission,2002(in Chinese). [16] SAE Aerospace. Recommended practice for the measurement of static and dynamic properties of aircraft tires:SAE ARP 4955A-2007[S].Warrendale:SAE International,2007. [17] TARTARUGA I, LOWENBERG M H, COOPER J E, et al. Bifurcation analysis of a nose landing gear system[C]//15th Dynamics Specialists Conference. Reston:AIAA, 2016:1572. [18] LONG S H. Active control of shimmy oscillation in aircraft landing gear[D]. Montreal:Concordia University, 2006. [19] STÉPÁN G. Delay, nonlinear oscillations and shimmying wheels[M].Dordrecht:Springer Netherlands, 1999:373-386. [20] MEDZORIAN J. An investigation of landing gear shimmy:Tire models, tire test methodologies, analysis and parameter studies[C]//SAE Technical Paper Series. Warrendale:SAE International, 1999. [21] KUNTANAPREEDA S. Control of shimmy vibration in aircraft landing gears based on tensor product model transformation and twisting sliding mode algorithm[C]//MATEC Web of Conferences, 2018, 161:02001. [22] COLLINS R L, BLACK R J. Tire parameters for landing-gear shimmy studies[J]. Journal of Aircraft, 1969, 6(3):252-258. [23] 周进雄, 诸德培. "结构型"摆振及其影响因素[J]. 强度与环境, 1998, 25(2):62-65. ZHOU J X, ZHU D P. Structural-torsion shimmy and the factors influence structural-torsion shimmy[J]. Structure & Environment Engineering, 1998, 25(2):62-65(in Chinese). [24] PENNISI G, MANN B P, NACLERIO N, et al. Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2018, 437:340-357. [25] LU Z, WANG Z X, ZHOU Y, et al. Nonlinear dissipative devices in structural vibration control:A review[J]. Journal of Sound and Vibration, 2018, 423:18-49. [26] HOWCROFT C, LOWENBERG M, NEILD S, et al. Effects of freeplay on dynamic stability of an aircraft main landing gear[J]. Journal of Aircraft, 2013, 50(6):1908-1922. [27] 向锦武, 杨冬梅. 飞机起落架摆振的阻尼特性影响[J]. 北京航空航天大学学报, 2005, 31(12):1358-1362. XIANG J W, YANG D M. Influence of damping characteristics to landing gear shimmy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12):1358-1362(in Chinese). [28] 诸德培. 飞机前轮摆振及减摆器的若干问题[J]. 航空学报, 1987, 8(12):557-562. ZHU D P. Some aspects of nose-wheel shimmy and shimmy damper of the aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12):557-562(in Chinese). [29] SMILEY R, HORNE W. Mechanical properties of pneumatic tires with special reference to modern aircraft tires[J]. Journal of Chemical Information and Modeling, 1960, 53(9):1689-1699. [30] PACEJKA H B. Tire and vehicle dynamics[M]. Amsterdam:Elsevier, 2005. [31] PACEJKA H B. Approximate dynamic shimmy response of pneumatic tires[J]. Vehicle System Dynamics, 1973, 2(1):49-60. [32] SMILEY R. Correlation, evaluation, and extension of linearized theories for tire motion and wheel shimmy:NASA-TR-1299[R].Washington,D.C.:NASA, 1957. [33] Von SCHLIPPE B, DIETRICH R V. Shimmying of a pneumatic wheel[J]. Lilienthal-Gesell schaft fur Luftfahrtforschung, Bericht, 1941, 140:125-160. [34] COLLINS R L. Theories on the mechanics of tires and their applications to shimmy analysis[J]. Journal of Aircraft, 1971, 8(4):271-277. [35] MORELAND W J. The story of shimmy[J]. Journal of the Aeronautical Sciences, 1954, 21(12):793-808. [36] MORELAND W J. Landing-gear vibration[R]. Washington,D.C.:Wright Air Development Center, 1951. [37] RAHMANI M, BEHDINAN K. On the effectiveness of shimmy dampers in stabilizing nose landing gears[J]. Aerospace Science and Technology, 2019, 91:272-286. [38] BESSELINK I, MAAS J, NIJMEIJER H. A comparison of linear tyre models for analysing shimmy[C]//22nd International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD2011), 2011. [39] BESSELINK I J M, SCHMEITZ A J C, PACEJKA H B. An improved magic formula/swift tyre model that can handle inflation pressure changes[J]. Vehicle System Dynamics, 2010, 48(sup1):337-352. [40] BESSELINK I J M, PACEJKA H, SCHMEITZ A, et al. The MF-Swift tyre model:Extending the magic formula with rigid ring dynamics and an enveloping model[J]. JSAE Review, 2005, 26(2):245-252. [41] CHUBAN V D. Shimmy analysis of light airplane main landing gear[J]. TsAGI Science Journal, 2017, 48(7):665-672. [42] DE FALCO D, DI MASSA G, PAGANO S. Wheel shimmy experimental investigation[C]//Proceedings of ASME 201211th Biennial Conference on Engineering Systems Design and Analysis. New York:ASME, 2013:717-726. [43] 张海东, 石飞, 王进剑, 等. 某型飞机前起落架减摆器优化[J]. 教练机, 2019(4):47-51. ZHANG H D, SHI F, WANG J J, et al. Optimization of nose gear shimmy damper of certain aircraft[J]. Trainer, 2019(4):47-51(in Chinese). [44] PAMELA A. Quasi-static and dynamic response characteristics of F-4 bias-ply and radial-belted main gear tires:NASA-TP-3586[R].Washington,D.C.:NASA, 1997. [45] SCHURING D J. Dynamic response of tires[J]. Tire Science and Technology, 1976, 4(2):115-145. [46] DAUGHTERTY R H. A study of the mechanical properties of modern radial aircraft tires[R]. Washington,D.C.:NASA, 2003. [47] 顾宏斌, 丁运亮, 姚志, 等. 飞机机轮摆振的数字仿真[J]. 航空学报, 2001, 22(4):362-365. GU H B, DING Y L, YAO Z, et al. Simulation of aircraft wheel shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4):362-365(in Chinese). [48] SURA N K, SURYANARAYAN S. Closed form analytical solution for the shimmy instability of nose-wheel landing gears[J]. Journal of Aircraft, 2007, 44(6):1985-1990. [49] LI Y, JIANG J Z, NEILD S. Inerter-based configurations for main-landing-gear shimmy suppression[J]. Journal of Aircraft, 2017, 54(2):684-693. [50] 刘胜利, 刘小川, 崔荣耀, 等. 机体连接处局部刚度对轻型飞机起落架摆振稳定性的影响研究[J]. 振动工程学报, 2017, 30(2):249-254. LIU S L, LIU X C, CUI R Y, et al. The influence of the fuselage joint local stiffness on landing gear shimmy stabilization of the light aircraft[J]. Journal of Vibration Engineering, 2017, 30(2):249-254(in Chinese). [51] 刘冲冲, 刘胜利, 崔荣耀. 考虑机体局部刚度影响的前起落架摆振分析[J]. 机械科学与技术, 2017, 36(5):811-815. LIU C C, LIU S L, CUI R Y. Nose landing gear shimmy analysis considering fuselage local stifness[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):811-815(in Chinese). [52] 寇明龙, 丁学斌, 卢京明. 飞机前起落架在转弯控制状态下的摆振分析及应用[J]. 航空科学技术, 2014, 25(12):67-72. KOU M L, DING X B, LU J M. Shimmy analysis of nose landing gear at state of control[J]. Aeronautical Science & Technology, 2014, 25(12):67-72(in Chinese). [53] 陈熠, 崔荣耀, 巨荣博, 等. 考虑机体动力特性的前起落架摆振分析[J]. 西北工业大学学报, 2018, 36(2):388-395. CHEN Y, CUI R Y, JU R B, et al. Simulation of nose landing gear shimmy with flexible airframe considered[J]. Journal of Northwestern Polytechnical University, 2018, 36(2):388-395(in Chinese). [54] 周进雄, 诸德培. 起落架结构参数对飞机机轮摆振的影响[J]. 应用力学学报, 2001, 18(1):121-124, 163. ZHOU J X, ZHU D P. The influence of landing gear structural parameters on aircraft wheel shimmy[J]. Chinese Journal of Applied Mechanics, 2001, 18(1):121-124, 163(in Chinese). [55] 周进雄, 诸德培. 起落架结构参数对飞机机轮摆振频率特性的影响[J]. 强度与环境, 1999, 26(2):15-19. ZHOU J X, ZHU D P. The influence of landing gear structural parameters on frequency characteristics of aircraft wheel shimmy[J]. Structure & Environment Engineering, 1999, 26(2):15-19(in Chinese). [56] LI Y, HOWCROFT C, NEILD S A, et al. Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear[J]. Journal of Sound and Vibration, 2017, 408:234-251. [57] ARREAZA C, BEHDINAN K, ZU J W. Linear stability analysis and dynamic response of shimmy dampers for main landing gears[J]. Journal of Applied Mechanics, 2016, 83(8):081002. [58] HOWCROFT C, LOWENBERG M, NEILD S, et al. Shimmy of an aircraft main landing gear with geometric coupling and mechanical freeplay[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):051011. [59] BESSELINK I J M. Shimmy of aircraft main landing gears[D]. Delft:Delft University of Technology, 2000. [60] CHUBAN V D. Shimmy analysis of aircraft multi-wheel landing gear[J]. TsAGI Science Journal, 2019, 50(2):195-209. [61] RAN S H, BESSELINK I J M, NIJMEIJER H. Application of nonlinear tyre models to analyse shimmy[J]. Vehicle System Dynamics, 2014, 52(sup1):387-404. [62] GILL S J, LOWENBERG M H, NEILD S A, et al. Upset dynamics of an airliner model:A nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6):1832-1842. [63] THOTA P, KRAUSKOPF B, LOWENBERG M. Shimmy in a nonlinear model of an aircraft nose landing gear with non-zero rake angle[C]//6th EUROMECH (European Mechanics Society) Nonlinear Dynamics Conference, 2008. [64] THOTA P, KRAUSKOPF B, LOWENBERG M. Interaction of torsion and lateral bending inaircraft nose landing gear shimmy[J]. Nonlinear Dynamics, 2009, 57(3):455-467. [65] THOTA P, KRAUSKOPF B, LOWENBERG M, et al. Influence of tire inflation pressure on nose landing gear shimmy[J]. Journal of Aircraft, 2010, 47(5):1697-1706. [66] RAHMANI M, BEHDINAN K. Parametric study of a novel nose landing gear shimmy damper concept[J]. Journal of Sound and Vibration, 2019, 457:299-313. [67] YIN Q Z, NIE H, WEI X H. Dynamics and directional stability of high-speed unmanned aerial vehicle ground taxiing process[J]. Journal of Aircraft, 2020, 57(4):689-701. [68] 王学军, 乔新. 前轮非线性摆振稳定性分析[J]. 南京航空航天大学学报, 1992, 24(1):9-18. WANG X J, QIAO X. The stability analysis of the nonlinear shimmy[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1992, 24(1):9-18(in Chinese). [69] 陈大伟, 顾宏斌, 刘晖. 起落架摆振主动控制分岔研究[J]. 振动与冲击, 2010, 29(7):38-42, 234. CHEN D W, GU H B, LIU H. Active control for landing gear shimmy with bifurcation theories[J]. Journal of Vibration and Shock, 2010, 29(7):38-42, 234(in Chinese). [70] 冯飞, 罗波, 张策, 等. 轮间距与双轮共转对飞机起落架摆振的影响分析[J]. 振动与冲击, 2019, 38(6):212-217. FENG F, LUO B, ZHANG C, et al. Effect of wheel-distance and corotating wheels on aircraft shimmy[J]. Journal of Vibration and Shock, 2019, 38(6):212-217(in Chinese). [71] 向宗威, 冯广, 姜义尧, 等. 飞机起落架结构间隙对摆振稳定性影响研究进展[J/OL]. 航空工程进展, 2021:1-10.[2022-05-10].http://kns.cnki.net/kcms/detail/61.1479.v.20211109.0929.002.html. XIANG Z W, FENG G, JIANG Y Y, et al. Research progress on the effect of structural clearance of aircraft landing gear on shimmy stability[J/OL]. Advances in Aeronautical Science and Engineering, 2021:1-10.[2022-05-10].http://kns.cnki.net/kcms/detail/61.1479.v.20211109.0929.002.html (in Chinese). [72] CHENG L F, CAO H J, ZHANG L T. Two-parameter bifurcation analysis of an aircraft nose landing gear model[J]. Nonlinear Dynamics, 2021, 103(1):367-381. [73] 冯飞, 常正, 聂宏, 等. 飞机柔性对前起落架摆振的影响分析[J]. 航空学报, 2011, 32(12):2227-2235. FENG F, CHANG Z, NIE H, et al. Analysis of influence of aircraft flexibility on nose landing gear shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2227-2235(in Chinese). [74] FENG F, NIE H, ZHANG M, et al. Criterion and parameter analysis in aircraft shimmy study[J]. Journal of Vibroengineering, 2014, 16(1):275-291. [75] 杨礼芳. 飞机轮胎刚度及尾轮摆振仿真分析[D]. 南京:南京航空航天大学, 2012. YANG L F. The simulation analysis on the tire stiffness and tail-wheel shimmy of a aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese). [76] TARTARUGA I, LEMMENS Y, SARTOR P, et al. On the influence of longitudinal tyre slip dynamics on aircraft landing gear shimmy[C]//Proceedings of the ISMA2016& USD2016 Conferences, 2016. [77] KHAPANE P D. Simulation of landing gear dynamics using flexible multi-body methods[C]//25th International Congress of the Aeronautical Sciences, 2006:3698-3707. [78] BECKERS C J J, ÖNGVT A E, VERBEEK G, et al. Bifurcation-based shimmy analysis of landing gears using flexible multibody models[M]//Nonlinear Structural Dynamics and Damping.Berlin:Springer, 2019:261-291. [79] RAHMANI M, BEHDINAN K. Investigation on the effect of coulomb friction on nose landing gear shimmy[J]. Journal of Vibration and Control, 2019, 25(2):255-272. [80] 何绪飞, 艾剑良, 宋智桃. 民机起落架摆振仿真与虚拟适航验证[J]. 机械工程学报, 2018, 54(14):179-184. HE X F, AI J L, SONG Z T. Shimmy simulation and virtual verification for civil aircraft landing gear airworthiness certification[J]. Journal of Mechanical Engineering, 2018, 54(14):179-184(in Chinese). [81] 刘胜利, 刘小川, 牟让科. Taguchi方法在飞机起落架摆振特性对设计参数灵敏度分析中的应用[J]. 振动工程学报, 2020, 33(4):750-755. LIU S L, LIU X C, MOU R K. The application of Taguchi method in sensitivity analysis on landing gear shimmy stabilization of the aircraft to design parameters[J]. Journal of Vibration Engineering, 2020, 33(4):750-755(in Chinese). [82] BLACK R J. Realistic evaluation of landing gear shimmy stabilization by test and analysis[C]//SAE Technical Paper Series. Warrendale:SAE International, 1976:1695-1708. [83] CLARK S, DODGE R, NYBAKKEN G. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires[R].Washington,D.C.:NASA, 1971. [84] HO F H, LAI J L. Parametric shimmy of a nosegear[J]. Journal of Aircraft, 1970, 7(4):373-375. [85] KRABACHER W E. The experimental measurement of the T-46 nose landing gear shimmy parameters[C]//SAE Technical Paper Series. Warrendale:SAE International, 1996. [86] YAGER T J. Aircraft nose gear shimmy studies[C]//SAE Technical Paper Series. Warrendale:SAE International, 1993:328-333. [87] 贾天娇, 汤阿妮. 起落架摆振飞行试验实测数据分析[J]. 航空工程进展, 2014, 5(1):64-69. JIA T J, TANG A N. Data analysis in landing gear shimmy test[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):64-69(in Chinese). [88] 谢帅, 舒成辉, 贾天娇, 等. 起落架摆振多体动力学建模及其在摆振飞行试验中的应用[J]. 机械科学与技术, 2018, 37(1):148-151. XIE S, SHU C H, JIA T J, et al. Multi-body dynamics modeling of landing gear shimmy and application in shimmy flight test based on model[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1):148-151(in Chinese). [89] 贾天娇, 汤阿妮, 谢帅. 前起落架摆振激励板设计方法研究[J]. 机械科学与技术, 2018, 37(11):1791-1798. JIA T J, TANG A N, XIE S. Design method of shimmy plank for nose landing gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11):1791-1798(in Chinese). [90] SURA N K, SURYANARAYAN S. Lateral response of nose-wheel landing gear system to ground-induced excitation[J]. Journal of Aircraft, 2007, 44(6):1998-2005. [91] INOUE K. An example of landing gear shimmy experience on small jet aircraft[C]//Proceedings of the First International Symposium on Flutter and its Application, 2017. [92] 常正, 金秀芬, 马建. 国内外起落架摆振研究进展及工程防摆设计的若干思考[J]. 航空工程进展, 2011, 2(3):273-275, 297. CHANG Z, JIN X F, MA J. Advances in the research of aircraft landing gear shimmy and some aspects of design considerations for shimmy prevention[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3):273-275, 297(in Chinese). [93] RAHMANI M, BEHDINAN K. Structural design and optimization of a novel shimmy damper for nose landing gears[J]. Structural and Multidisciplinary Optimization, 2020, 62(5):2783-2803. [94] LIU Z, LI X, DING X, et al. Research on soft sensing of aircraft nose landing gear shimmy damp based on neural network[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2020). Institution of Engineering and Technology, 2021. [95] RECHERCHE D G. Aeronautics and air transport research[R]. Publications Office of the European Union, 2010. [96] TOURAJIZADEH H, ZARE S. Robust and optimal control of shimmy vibration in aircraft nose landing gear[J]. Aerospace Science and Technology, 2016, 50:1-14. [97] 陈大伟, 顾宏斌. 起落架摆振控制及试验研究综述[J]. 飞机设计, 2011, 31(2):38-41. CHEN D W, GU H B. Review of landing gear shimmy control and tests[J]. Aircraft Design, 2011, 31(2):38-41(in Chinese). [98] FAKHR SHAMLOO N, AKBARZADEH KALAT A, CHISCI L. Indirect adaptive fuzzy control of nonlinear descriptor systems[J]. European Journal of Control, 2020, 51:30-38. [99] POULY G, HUYNH T H, LAUFFENBURGER J P, et al. Indirect fuzzy adaptive control for active shimmy damping[J]. IFAC Proceedings Volumes, 2008, 41(2):15058-15063. [100] 祝世兴, 王璐琦, 王博. 磁流变阻尼器力学模型改进与分析[J]. 机床与液压, 2020, 48(17):88-92, 102. ZHU S X, WANG L Q, WANG B. Improvement and analysis of mechanical model of magnetorheological damper[J]. Machine Tool & Hydraulics, 2020, 48(17):88-92, 102(in Chinese). [101] 祝世兴, 郝新琛. 基于Bingham模型的磁流变阻尼器模型改进研究[D]. 天津:机床与液压, 2019, 47(17):98-102, 128. ZHU S X, HAO X C. Research of improving MRD model based on Bingham model[D]. Tianjin:Machine Tool & Hydraulics, 2019, 47(17):98-102, 128(in Chinese). [102] 祝世兴, 郝新琛. 活塞式磁流变减摆器阻尼力模型建立及实验研究[J]. 机床与液压, 2019, 47(20):20-23, 27. ZHU S X, HAO X C. Modeling and experimental research on damping force model for piston magnetorheological fluid shimmy damper[J]. Machine Tool & Hydraulics, 2019, 47(20):20-23, 27(in Chinese). [103] 祝世兴, 耿凡. 新型磁流变制动器的结构设计[J]. 液压气动与密封, 2018, 38(9):83-88. ZHU S X, GENG F. The structure design of a new magnetorheological brake[J]. Hydraulics Pneumatics & Seals, 2018, 38(9):83-88(in Chinese). [104] 杨云鹏. 飞机起落架磁流变减摆器设计流程和规范研究[M].天津:中国民航大学,2017. YANG Y P. Research on design process and specification of MR damper for aircraft landing gear[M]. Tianjing:Civil Aviation University of China, 2017(in Chinese). [105] 祝世兴, 卢铭涛. 磁流变减振器磁路结构的参数化优化设计[J]. 机械设计与制造, 2013(3):41-45. ZHU S X, LU M T. Parametric optimization design of the magnetic circuit structure for magnetorheological damper[J]. Machinery Design & Manufacture, 2013(3):41-45(in Chinese). [106] ATABAY E, OZKOL I. Application of a magnetorheological damper modeled using the current-dependent Bouc-Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay[J]. Journal of Vibration and Control, 2014, 20(11):1622-1644. [107] DONG L, CHEN Z Q, SUN M W, et al. Study on magneto-rheological damper control of aircraft landing gear based on LADRC[M]//Lecture notes in electrical engineering. Singapore:Springer Singapore, 2021:830-840. [108] KANG C X, WANG B, ZHU S X. Design and experiment of magnetorheological shimmy damper controller based on deep neural network[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), 2018. [109] 杨永刚, 张磊, 顾新东, 等. 基于磁流变阻尼器的前起落架摆振半主动最优控制[J]. 机床与液压, 2017, 45(21):100-104. YANG Y G, ZHANG L, GU X D, et al. Semi-active optimal control of nose landing gear based on MR damper[J]. Machine Tool & Hydraulics, 2017, 45(21):100-104(in Chinese). [110] 刘冲冲,刘小川,刘胜利,等.轮胎刚度智能预测及在起落架摆振分析中的应用[J/OL].振动工程学报:1-6[2022-03-17].http://120.39.221.148/kcms/detail/32.1349.tb.20220307.0930.002.html. LIU C C,LIU X C,LIU S L,et al.Intelligent prediction of tire stiffness and its application in landing gear shimmy analysis[J/OL].Journal of Vibration Engineering:1-6[2022-03-17].http://120.39.221.148/kcms/detail/32.1349.tb.20220307.0930.002.html (in Chinese). |