刘小川1,2,3, 刘冲冲1,2,3, 牟让科1,2,3
收稿日期:
2022-02-23
修回日期:
2022-03-24
出版日期:
2022-06-15
发布日期:
2022-03-22
通讯作者:
刘小川,E-mail:liuxiaochuan@avic.com
E-mail:liuxiaochuan@avic.com
基金资助:
LIU Xiaochuan1,2,3, LIU Chongchong1,2,3, MOU Rangke1,2,3
Received:
2022-02-23
Revised:
2022-03-24
Online:
2022-06-15
Published:
2022-03-22
Supported by:
摘要: 摆振是起落架支柱侧向运动与围绕支柱的扭转运动相互耦合产生的自激振动,对飞机地面滑行的操纵性与安全性等具有很大的危害,是起落架系统设计中重点关注的动力学问题之一。摆振主要有"轮胎型"和"结构型"2类,可以采用动力学理论建模、多体动力学数值分析与全尺寸物理试验等方法对起落架系统的摆振特性进行研究,已发展了线性与非线性理论建模方法和数值工具,建立起了起落架摆振试验系统,也开展了全机瞬态激励下的滑跑稳定性试验。为防止摆振问题的产生,在认识摆振机理的基础上,研究者广泛而又深入地研究了起落架设计参数、轮胎参数、机体特性等对滑跑动响应与稳定性的影响,在获得各种设计参数对起落架摆振稳定性影响的基础上,发展了摆振动力学优化设计方法和智能器件与半主动/主动控制的摆振抑制方法,并开展了试验验证或装机演示验证。结合未来飞机平台的发展和起落架技术的创新,对起落架摆振动力学问题的未来发展方向进行了展望。
中图分类号:
刘小川, 刘冲冲, 牟让科. 飞机起落架系统摆振动力学研究进展[J]. 航空学报, 2022, 43(6): 527063.
LIU Xiaochuan, LIU Chongchong, MOU Rangke. Research progress on shimmy dynamics of aircraft landing gear systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 527063.
[1] PACEJKA H. The wheel shimmy phenomenon:A theoretical and experimental investigation with particular reference to the non-linear problem[D]. Delft:Delft University of Technology, 1966. [2] DUTTA S, CHOI S B. Control of a shimmy vibration in vehicle steering system using a magneto rheological damper[J]. Journal of Vibration and Control, 2018, 24(4):797-807. [3] 祝世兴, 付一博. 新型磁流变减摆器节流孔流场分析[J]. 航空工程进展, 2021, 12(1):104-112. ZHU S X, FU Y B. Flow field analysis of throttling aperture of a new magneto-rheological shimmy damper[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1):104-112(in Chinese). [4] 祝世兴, 刘秀. 飞机前起落架磁流变液减摆器设计与性能分析[J]. 机床与液压, 2019, 47(2):65-68, 98. ZHU S X, LIU X. Design and performance analysis of magnetorheological fluid shimmy damper for aircraft nose landing gear[J]. Machine Tool & Hydraulics, 2019, 47(2):65-68, 98(in Chinese). [5] 祝世兴, 杨云鹏. 飞机起落架磁流变减摆器的设计流程[J]. 液压与气动, 2016(10):67-74. ZHU S X, YANG Y P. Design process of aircraft landing gear shimmy dampers based on magnetorheological fluid[J]. Chinese Hydraulics & Pneumatics, 2016(10):67-74(in Chinese). [6] KRVGER W R, MORANDINI M. Recent developments at the numerical simulation of landing gear dynamics[J]. CEAS Aeronautical Journal, 2011, 1(1-4):55-68. [7] PRITCHARD J. Overview of landing gear dynamics[J]. Journal of Aircraft, 2001, 38(1):130-137. [8] SOMIESKI G. Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods[J]. Aerospace Science and Technology, 1997, 1(8):545-555. [9] CURREY N S. Aircraft landing gear design:Principles and practices[M]. Reston:AIAA, 1988. [10] GROSSMAN D T. F-15 nose landing gear shimmy, taxi test and correlative analyses[C]//SAE Technical Paper Series. Warrendale:SAE International, 1980:3781-3791. [11] 周福亮. 飞机起落架摆振稳定性仿真分析研究[D]. 南京:南京航空航天大学, 2008. ZHOU F L. Study on the shimmy stability of aircraft landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). [12] SAE Aerospace.Landing gear stability:SAE AIR 4894-1995[S]. Warrendale:SAE International,1995. [13] 国防科学技术工业委员会.飞机前轮摆振试验要求:GJB 8610-2015[S] 北京:国防科学技术工业委员会,2015. National Defense Science, Technology and Industry Commission. Requirements for aircraft front wheel shimmy test:GJB 8610-2015[S] Beijing:National Defense Science, Technology and Industry Commission,2015(in Chinese). [14] 中国民用航空局.运输类飞机适航标准:CCAR 25[S] 北京:中国民用航空局,2015. Civil Aviation Administration of China. Airworthiness standard for transport aircraft:CCAR 25[S] Beijing:Civil Aviation Administration of China,2015(in Chinese). [15] 国防科学技术工业委员会.飞机前起落架防摆设计要求:GJB 5097-2002[S].北京:国防科学技术工业委员会,2002. National Defense Science, Technology and Industry Commission. Design requirements for anti swing of aircraft nose landing gear:GJB 5097-2002[S].Beijing:National Defense Science, Technology and Industry Commission,2002(in Chinese). [16] SAE Aerospace. Recommended practice for the measurement of static and dynamic properties of aircraft tires:SAE ARP 4955A-2007[S].Warrendale:SAE International,2007. [17] TARTARUGA I, LOWENBERG M H, COOPER J E, et al. Bifurcation analysis of a nose landing gear system[C]//15th Dynamics Specialists Conference. Reston:AIAA, 2016:1572. [18] LONG S H. Active control of shimmy oscillation in aircraft landing gear[D]. Montreal:Concordia University, 2006. [19] STÉPÁN G. Delay, nonlinear oscillations and shimmying wheels[M].Dordrecht:Springer Netherlands, 1999:373-386. [20] MEDZORIAN J. An investigation of landing gear shimmy:Tire models, tire test methodologies, analysis and parameter studies[C]//SAE Technical Paper Series. Warrendale:SAE International, 1999. [21] KUNTANAPREEDA S. Control of shimmy vibration in aircraft landing gears based on tensor product model transformation and twisting sliding mode algorithm[C]//MATEC Web of Conferences, 2018, 161:02001. [22] COLLINS R L, BLACK R J. Tire parameters for landing-gear shimmy studies[J]. Journal of Aircraft, 1969, 6(3):252-258. [23] 周进雄, 诸德培. "结构型"摆振及其影响因素[J]. 强度与环境, 1998, 25(2):62-65. ZHOU J X, ZHU D P. Structural-torsion shimmy and the factors influence structural-torsion shimmy[J]. Structure & Environment Engineering, 1998, 25(2):62-65(in Chinese). [24] PENNISI G, MANN B P, NACLERIO N, et al. Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2018, 437:340-357. [25] LU Z, WANG Z X, ZHOU Y, et al. Nonlinear dissipative devices in structural vibration control:A review[J]. Journal of Sound and Vibration, 2018, 423:18-49. [26] HOWCROFT C, LOWENBERG M, NEILD S, et al. Effects of freeplay on dynamic stability of an aircraft main landing gear[J]. Journal of Aircraft, 2013, 50(6):1908-1922. [27] 向锦武, 杨冬梅. 飞机起落架摆振的阻尼特性影响[J]. 北京航空航天大学学报, 2005, 31(12):1358-1362. XIANG J W, YANG D M. Influence of damping characteristics to landing gear shimmy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12):1358-1362(in Chinese). [28] 诸德培. 飞机前轮摆振及减摆器的若干问题[J]. 航空学报, 1987, 8(12):557-562. ZHU D P. Some aspects of nose-wheel shimmy and shimmy damper of the aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12):557-562(in Chinese). [29] SMILEY R, HORNE W. Mechanical properties of pneumatic tires with special reference to modern aircraft tires[J]. Journal of Chemical Information and Modeling, 1960, 53(9):1689-1699. [30] PACEJKA H B. Tire and vehicle dynamics[M]. Amsterdam:Elsevier, 2005. [31] PACEJKA H B. Approximate dynamic shimmy response of pneumatic tires[J]. Vehicle System Dynamics, 1973, 2(1):49-60. [32] SMILEY R. Correlation, evaluation, and extension of linearized theories for tire motion and wheel shimmy:NASA-TR-1299[R].Washington,D.C.:NASA, 1957. [33] Von SCHLIPPE B, DIETRICH R V. Shimmying of a pneumatic wheel[J]. Lilienthal-Gesell schaft fur Luftfahrtforschung, Bericht, 1941, 140:125-160. [34] COLLINS R L. Theories on the mechanics of tires and their applications to shimmy analysis[J]. Journal of Aircraft, 1971, 8(4):271-277. [35] MORELAND W J. The story of shimmy[J]. Journal of the Aeronautical Sciences, 1954, 21(12):793-808. [36] MORELAND W J. Landing-gear vibration[R]. Washington,D.C.:Wright Air Development Center, 1951. [37] RAHMANI M, BEHDINAN K. On the effectiveness of shimmy dampers in stabilizing nose landing gears[J]. Aerospace Science and Technology, 2019, 91:272-286. [38] BESSELINK I, MAAS J, NIJMEIJER H. A comparison of linear tyre models for analysing shimmy[C]//22nd International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD2011), 2011. [39] BESSELINK I J M, SCHMEITZ A J C, PACEJKA H B. An improved magic formula/swift tyre model that can handle inflation pressure changes[J]. Vehicle System Dynamics, 2010, 48(sup1):337-352. [40] BESSELINK I J M, PACEJKA H, SCHMEITZ A, et al. The MF-Swift tyre model:Extending the magic formula with rigid ring dynamics and an enveloping model[J]. JSAE Review, 2005, 26(2):245-252. [41] CHUBAN V D. Shimmy analysis of light airplane main landing gear[J]. TsAGI Science Journal, 2017, 48(7):665-672. [42] DE FALCO D, DI MASSA G, PAGANO S. Wheel shimmy experimental investigation[C]//Proceedings of ASME 201211th Biennial Conference on Engineering Systems Design and Analysis. New York:ASME, 2013:717-726. [43] 张海东, 石飞, 王进剑, 等. 某型飞机前起落架减摆器优化[J]. 教练机, 2019(4):47-51. ZHANG H D, SHI F, WANG J J, et al. Optimization of nose gear shimmy damper of certain aircraft[J]. Trainer, 2019(4):47-51(in Chinese). [44] PAMELA A. Quasi-static and dynamic response characteristics of F-4 bias-ply and radial-belted main gear tires:NASA-TP-3586[R].Washington,D.C.:NASA, 1997. [45] SCHURING D J. Dynamic response of tires[J]. Tire Science and Technology, 1976, 4(2):115-145. [46] DAUGHTERTY R H. A study of the mechanical properties of modern radial aircraft tires[R]. Washington,D.C.:NASA, 2003. [47] 顾宏斌, 丁运亮, 姚志, 等. 飞机机轮摆振的数字仿真[J]. 航空学报, 2001, 22(4):362-365. GU H B, DING Y L, YAO Z, et al. Simulation of aircraft wheel shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4):362-365(in Chinese). [48] SURA N K, SURYANARAYAN S. Closed form analytical solution for the shimmy instability of nose-wheel landing gears[J]. Journal of Aircraft, 2007, 44(6):1985-1990. [49] LI Y, JIANG J Z, NEILD S. Inerter-based configurations for main-landing-gear shimmy suppression[J]. Journal of Aircraft, 2017, 54(2):684-693. [50] 刘胜利, 刘小川, 崔荣耀, 等. 机体连接处局部刚度对轻型飞机起落架摆振稳定性的影响研究[J]. 振动工程学报, 2017, 30(2):249-254. LIU S L, LIU X C, CUI R Y, et al. The influence of the fuselage joint local stiffness on landing gear shimmy stabilization of the light aircraft[J]. Journal of Vibration Engineering, 2017, 30(2):249-254(in Chinese). [51] 刘冲冲, 刘胜利, 崔荣耀. 考虑机体局部刚度影响的前起落架摆振分析[J]. 机械科学与技术, 2017, 36(5):811-815. LIU C C, LIU S L, CUI R Y. Nose landing gear shimmy analysis considering fuselage local stifness[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):811-815(in Chinese). [52] 寇明龙, 丁学斌, 卢京明. 飞机前起落架在转弯控制状态下的摆振分析及应用[J]. 航空科学技术, 2014, 25(12):67-72. KOU M L, DING X B, LU J M. Shimmy analysis of nose landing gear at state of control[J]. Aeronautical Science & Technology, 2014, 25(12):67-72(in Chinese). [53] 陈熠, 崔荣耀, 巨荣博, 等. 考虑机体动力特性的前起落架摆振分析[J]. 西北工业大学学报, 2018, 36(2):388-395. CHEN Y, CUI R Y, JU R B, et al. Simulation of nose landing gear shimmy with flexible airframe considered[J]. Journal of Northwestern Polytechnical University, 2018, 36(2):388-395(in Chinese). [54] 周进雄, 诸德培. 起落架结构参数对飞机机轮摆振的影响[J]. 应用力学学报, 2001, 18(1):121-124, 163. ZHOU J X, ZHU D P. The influence of landing gear structural parameters on aircraft wheel shimmy[J]. Chinese Journal of Applied Mechanics, 2001, 18(1):121-124, 163(in Chinese). [55] 周进雄, 诸德培. 起落架结构参数对飞机机轮摆振频率特性的影响[J]. 强度与环境, 1999, 26(2):15-19. ZHOU J X, ZHU D P. The influence of landing gear structural parameters on frequency characteristics of aircraft wheel shimmy[J]. Structure & Environment Engineering, 1999, 26(2):15-19(in Chinese). [56] LI Y, HOWCROFT C, NEILD S A, et al. Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear[J]. Journal of Sound and Vibration, 2017, 408:234-251. [57] ARREAZA C, BEHDINAN K, ZU J W. Linear stability analysis and dynamic response of shimmy dampers for main landing gears[J]. Journal of Applied Mechanics, 2016, 83(8):081002. [58] HOWCROFT C, LOWENBERG M, NEILD S, et al. Shimmy of an aircraft main landing gear with geometric coupling and mechanical freeplay[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):051011. [59] BESSELINK I J M. Shimmy of aircraft main landing gears[D]. Delft:Delft University of Technology, 2000. [60] CHUBAN V D. Shimmy analysis of aircraft multi-wheel landing gear[J]. TsAGI Science Journal, 2019, 50(2):195-209. [61] RAN S H, BESSELINK I J M, NIJMEIJER H. Application of nonlinear tyre models to analyse shimmy[J]. Vehicle System Dynamics, 2014, 52(sup1):387-404. [62] GILL S J, LOWENBERG M H, NEILD S A, et al. Upset dynamics of an airliner model:A nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6):1832-1842. [63] THOTA P, KRAUSKOPF B, LOWENBERG M. Shimmy in a nonlinear model of an aircraft nose landing gear with non-zero rake angle[C]//6th EUROMECH (European Mechanics Society) Nonlinear Dynamics Conference, 2008. [64] THOTA P, KRAUSKOPF B, LOWENBERG M. Interaction of torsion and lateral bending inaircraft nose landing gear shimmy[J]. Nonlinear Dynamics, 2009, 57(3):455-467. [65] THOTA P, KRAUSKOPF B, LOWENBERG M, et al. Influence of tire inflation pressure on nose landing gear shimmy[J]. Journal of Aircraft, 2010, 47(5):1697-1706. [66] RAHMANI M, BEHDINAN K. Parametric study of a novel nose landing gear shimmy damper concept[J]. Journal of Sound and Vibration, 2019, 457:299-313. [67] YIN Q Z, NIE H, WEI X H. Dynamics and directional stability of high-speed unmanned aerial vehicle ground taxiing process[J]. Journal of Aircraft, 2020, 57(4):689-701. [68] 王学军, 乔新. 前轮非线性摆振稳定性分析[J]. 南京航空航天大学学报, 1992, 24(1):9-18. WANG X J, QIAO X. The stability analysis of the nonlinear shimmy[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1992, 24(1):9-18(in Chinese). [69] 陈大伟, 顾宏斌, 刘晖. 起落架摆振主动控制分岔研究[J]. 振动与冲击, 2010, 29(7):38-42, 234. CHEN D W, GU H B, LIU H. Active control for landing gear shimmy with bifurcation theories[J]. Journal of Vibration and Shock, 2010, 29(7):38-42, 234(in Chinese). [70] 冯飞, 罗波, 张策, 等. 轮间距与双轮共转对飞机起落架摆振的影响分析[J]. 振动与冲击, 2019, 38(6):212-217. FENG F, LUO B, ZHANG C, et al. Effect of wheel-distance and corotating wheels on aircraft shimmy[J]. Journal of Vibration and Shock, 2019, 38(6):212-217(in Chinese). [71] 向宗威, 冯广, 姜义尧, 等. 飞机起落架结构间隙对摆振稳定性影响研究进展[J/OL]. 航空工程进展, 2021:1-10.[2022-05-10].http://kns.cnki.net/kcms/detail/61.1479.v.20211109.0929.002.html. XIANG Z W, FENG G, JIANG Y Y, et al. Research progress on the effect of structural clearance of aircraft landing gear on shimmy stability[J/OL]. Advances in Aeronautical Science and Engineering, 2021:1-10.[2022-05-10].http://kns.cnki.net/kcms/detail/61.1479.v.20211109.0929.002.html (in Chinese). [72] CHENG L F, CAO H J, ZHANG L T. Two-parameter bifurcation analysis of an aircraft nose landing gear model[J]. Nonlinear Dynamics, 2021, 103(1):367-381. [73] 冯飞, 常正, 聂宏, 等. 飞机柔性对前起落架摆振的影响分析[J]. 航空学报, 2011, 32(12):2227-2235. FENG F, CHANG Z, NIE H, et al. Analysis of influence of aircraft flexibility on nose landing gear shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2227-2235(in Chinese). [74] FENG F, NIE H, ZHANG M, et al. Criterion and parameter analysis in aircraft shimmy study[J]. Journal of Vibroengineering, 2014, 16(1):275-291. [75] 杨礼芳. 飞机轮胎刚度及尾轮摆振仿真分析[D]. 南京:南京航空航天大学, 2012. YANG L F. The simulation analysis on the tire stiffness and tail-wheel shimmy of a aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese). [76] TARTARUGA I, LEMMENS Y, SARTOR P, et al. On the influence of longitudinal tyre slip dynamics on aircraft landing gear shimmy[C]//Proceedings of the ISMA2016& USD2016 Conferences, 2016. [77] KHAPANE P D. Simulation of landing gear dynamics using flexible multi-body methods[C]//25th International Congress of the Aeronautical Sciences, 2006:3698-3707. [78] BECKERS C J J, ÖNGVT A E, VERBEEK G, et al. Bifurcation-based shimmy analysis of landing gears using flexible multibody models[M]//Nonlinear Structural Dynamics and Damping.Berlin:Springer, 2019:261-291. [79] RAHMANI M, BEHDINAN K. Investigation on the effect of coulomb friction on nose landing gear shimmy[J]. Journal of Vibration and Control, 2019, 25(2):255-272. [80] 何绪飞, 艾剑良, 宋智桃. 民机起落架摆振仿真与虚拟适航验证[J]. 机械工程学报, 2018, 54(14):179-184. HE X F, AI J L, SONG Z T. Shimmy simulation and virtual verification for civil aircraft landing gear airworthiness certification[J]. Journal of Mechanical Engineering, 2018, 54(14):179-184(in Chinese). [81] 刘胜利, 刘小川, 牟让科. Taguchi方法在飞机起落架摆振特性对设计参数灵敏度分析中的应用[J]. 振动工程学报, 2020, 33(4):750-755. LIU S L, LIU X C, MOU R K. The application of Taguchi method in sensitivity analysis on landing gear shimmy stabilization of the aircraft to design parameters[J]. Journal of Vibration Engineering, 2020, 33(4):750-755(in Chinese). [82] BLACK R J. Realistic evaluation of landing gear shimmy stabilization by test and analysis[C]//SAE Technical Paper Series. Warrendale:SAE International, 1976:1695-1708. [83] CLARK S, DODGE R, NYBAKKEN G. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires[R].Washington,D.C.:NASA, 1971. [84] HO F H, LAI J L. Parametric shimmy of a nosegear[J]. Journal of Aircraft, 1970, 7(4):373-375. [85] KRABACHER W E. The experimental measurement of the T-46 nose landing gear shimmy parameters[C]//SAE Technical Paper Series. Warrendale:SAE International, 1996. [86] YAGER T J. Aircraft nose gear shimmy studies[C]//SAE Technical Paper Series. Warrendale:SAE International, 1993:328-333. [87] 贾天娇, 汤阿妮. 起落架摆振飞行试验实测数据分析[J]. 航空工程进展, 2014, 5(1):64-69. JIA T J, TANG A N. Data analysis in landing gear shimmy test[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):64-69(in Chinese). [88] 谢帅, 舒成辉, 贾天娇, 等. 起落架摆振多体动力学建模及其在摆振飞行试验中的应用[J]. 机械科学与技术, 2018, 37(1):148-151. XIE S, SHU C H, JIA T J, et al. Multi-body dynamics modeling of landing gear shimmy and application in shimmy flight test based on model[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1):148-151(in Chinese). [89] 贾天娇, 汤阿妮, 谢帅. 前起落架摆振激励板设计方法研究[J]. 机械科学与技术, 2018, 37(11):1791-1798. JIA T J, TANG A N, XIE S. Design method of shimmy plank for nose landing gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11):1791-1798(in Chinese). [90] SURA N K, SURYANARAYAN S. Lateral response of nose-wheel landing gear system to ground-induced excitation[J]. Journal of Aircraft, 2007, 44(6):1998-2005. [91] INOUE K. An example of landing gear shimmy experience on small jet aircraft[C]//Proceedings of the First International Symposium on Flutter and its Application, 2017. [92] 常正, 金秀芬, 马建. 国内外起落架摆振研究进展及工程防摆设计的若干思考[J]. 航空工程进展, 2011, 2(3):273-275, 297. CHANG Z, JIN X F, MA J. Advances in the research of aircraft landing gear shimmy and some aspects of design considerations for shimmy prevention[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3):273-275, 297(in Chinese). [93] RAHMANI M, BEHDINAN K. Structural design and optimization of a novel shimmy damper for nose landing gears[J]. Structural and Multidisciplinary Optimization, 2020, 62(5):2783-2803. [94] LIU Z, LI X, DING X, et al. Research on soft sensing of aircraft nose landing gear shimmy damp based on neural network[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2020). Institution of Engineering and Technology, 2021. [95] RECHERCHE D G. Aeronautics and air transport research[R]. Publications Office of the European Union, 2010. [96] TOURAJIZADEH H, ZARE S. Robust and optimal control of shimmy vibration in aircraft nose landing gear[J]. Aerospace Science and Technology, 2016, 50:1-14. [97] 陈大伟, 顾宏斌. 起落架摆振控制及试验研究综述[J]. 飞机设计, 2011, 31(2):38-41. CHEN D W, GU H B. Review of landing gear shimmy control and tests[J]. Aircraft Design, 2011, 31(2):38-41(in Chinese). [98] FAKHR SHAMLOO N, AKBARZADEH KALAT A, CHISCI L. Indirect adaptive fuzzy control of nonlinear descriptor systems[J]. European Journal of Control, 2020, 51:30-38. [99] POULY G, HUYNH T H, LAUFFENBURGER J P, et al. Indirect fuzzy adaptive control for active shimmy damping[J]. IFAC Proceedings Volumes, 2008, 41(2):15058-15063. [100] 祝世兴, 王璐琦, 王博. 磁流变阻尼器力学模型改进与分析[J]. 机床与液压, 2020, 48(17):88-92, 102. ZHU S X, WANG L Q, WANG B. Improvement and analysis of mechanical model of magnetorheological damper[J]. Machine Tool & Hydraulics, 2020, 48(17):88-92, 102(in Chinese). [101] 祝世兴, 郝新琛. 基于Bingham模型的磁流变阻尼器模型改进研究[D]. 天津:机床与液压, 2019, 47(17):98-102, 128. ZHU S X, HAO X C. Research of improving MRD model based on Bingham model[D]. Tianjin:Machine Tool & Hydraulics, 2019, 47(17):98-102, 128(in Chinese). [102] 祝世兴, 郝新琛. 活塞式磁流变减摆器阻尼力模型建立及实验研究[J]. 机床与液压, 2019, 47(20):20-23, 27. ZHU S X, HAO X C. Modeling and experimental research on damping force model for piston magnetorheological fluid shimmy damper[J]. Machine Tool & Hydraulics, 2019, 47(20):20-23, 27(in Chinese). [103] 祝世兴, 耿凡. 新型磁流变制动器的结构设计[J]. 液压气动与密封, 2018, 38(9):83-88. ZHU S X, GENG F. The structure design of a new magnetorheological brake[J]. Hydraulics Pneumatics & Seals, 2018, 38(9):83-88(in Chinese). [104] 杨云鹏. 飞机起落架磁流变减摆器设计流程和规范研究[M].天津:中国民航大学,2017. YANG Y P. Research on design process and specification of MR damper for aircraft landing gear[M]. Tianjing:Civil Aviation University of China, 2017(in Chinese). [105] 祝世兴, 卢铭涛. 磁流变减振器磁路结构的参数化优化设计[J]. 机械设计与制造, 2013(3):41-45. ZHU S X, LU M T. Parametric optimization design of the magnetic circuit structure for magnetorheological damper[J]. Machinery Design & Manufacture, 2013(3):41-45(in Chinese). [106] ATABAY E, OZKOL I. Application of a magnetorheological damper modeled using the current-dependent Bouc-Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay[J]. Journal of Vibration and Control, 2014, 20(11):1622-1644. [107] DONG L, CHEN Z Q, SUN M W, et al. Study on magneto-rheological damper control of aircraft landing gear based on LADRC[M]//Lecture notes in electrical engineering. Singapore:Springer Singapore, 2021:830-840. [108] KANG C X, WANG B, ZHU S X. Design and experiment of magnetorheological shimmy damper controller based on deep neural network[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), 2018. [109] 杨永刚, 张磊, 顾新东, 等. 基于磁流变阻尼器的前起落架摆振半主动最优控制[J]. 机床与液压, 2017, 45(21):100-104. YANG Y G, ZHANG L, GU X D, et al. Semi-active optimal control of nose landing gear based on MR damper[J]. Machine Tool & Hydraulics, 2017, 45(21):100-104(in Chinese). [110] 刘冲冲,刘小川,刘胜利,等.轮胎刚度智能预测及在起落架摆振分析中的应用[J/OL].振动工程学报:1-6[2022-03-17].http://120.39.221.148/kcms/detail/32.1349.tb.20220307.0930.002.html. LIU C C,LIU X C,LIU S L,et al.Intelligent prediction of tire stiffness and its application in landing gear shimmy analysis[J/OL].Journal of Vibration Engineering:1-6[2022-03-17].http://120.39.221.148/kcms/detail/32.1349.tb.20220307.0930.002.html (in Chinese). |
[1] | 康在飞, 王乐, 姜澎伟, 杨智春. 磁流变起落架的开关控制落震载荷减缓实验[J]. 航空学报, 2024, 45(12): 229425-229425. |
[2] | 李文龙, 吴波, 谢帅. 有起落架布置的翼身整体结构机翼载荷测量技术[J]. 航空学报, 2024, 45(1): 229525-229525. |
[3] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[4] | 赵鲲, 梁俊彪, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. 民用飞机起落架噪声及其控制技术研究进展[J]. 航空学报, 2022, 43(8): 26996-026996. |
[5] | 李跃明, 李晓云, 柴怡君, 杨雄伟. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915-526915. |
[6] | 杜晓琼, 李斌, 罗琳胤. 水陆两栖飞机高支柱起落架的刹车振动行为[J]. 航空学报, 2022, 43(6): 526199-526199. |
[7] | 李跃明, 李晓云, 柴怡君, 杨雄伟. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915-526915. |
[8] | 鄢荣, 何逸文, 李凯翔, 李鹏, 牟让科, 史爱明. 起落架开舱构型自激振荡预测公式改进与分析[J]. 航空学报, 2022, 43(12): 226140-226140. |
[9] | 马战奇, 孙秀文, 王玲奇. 旋翼减摆自润滑衬套疲劳试验温度设计与控制[J]. 航空学报, 2021, 42(5): 524217-524217. |
[10] | 杨易鑫, 印寅, 聂宏, 魏小辉. 基于分岔理论的起落架撑杆式锁机构设计[J]. 航空学报, 2020, 41(11): 223958-223958. |
[11] | 梁勇, 陈迎春, 赵鲲, 孙静, 卢翔宇, 赵昱. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932-122932. |
[12] | 杜金柱, 孟凡星, 卢学峰. 基于能量法的起落架落震试验评定准则[J]. 航空学报, 2018, 39(4): 221375-221375. |
[13] | 吴靖, 胡国才, 柳泉, 刘湘一. 基于直升机地面共振要求的起落架刚度及阻尼优化设计[J]. 航空学报, 2018, 39(12): 222027-222027. |
[14] | 房兴波, 聂宏, 张钊, 魏小辉, 张明. 计及弹射滑车质量的某舰载无人机弹射动态响应分析[J]. 航空学报, 2018, 39(12): 222237-222237. |
[15] | 邢宇, 刘沛清, 郭昊, 徐亮, 李玲. 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017, 38(6): 120769-120769. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 551
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学