航空学报 > 2024, Vol. 45 Issue (21): 230154-230154   doi: 10.7527/S1000-6893.2024.30154

固体力学与飞行器总体设计

滑跑三维动力学建模与纠偏控制约束分析

辛宏博, 陈清阳(), 王鹏, 王玉杰, 侯中喜   

  1. 国防科技大学 空天科学学院,长沙 410073
  • 收稿日期:2024-01-15 修回日期:2024-02-22 接受日期:2024-05-06 出版日期:2024-06-17 发布日期:2024-05-14
  • 通讯作者: 陈清阳 E-mail:chy1982_008@nudt.edu.cn
  • 基金资助:
    湖南省自然科学基金(2023JJ30631);国家级项目(2021ZD01403XX-01);湖南省科技创新计划资助项目(2021RC3077)

3D dynamic modelling and constraints analysis of taxiing deviation correction control

Hongbo XIN, Qingyang CHEN(), Peng WANG, Yujie WANG, Zhongxi HOU   

  1. College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
  • Received:2024-01-15 Revised:2024-02-22 Accepted:2024-05-06 Online:2024-06-17 Published:2024-05-14
  • Contact: Qingyang CHEN E-mail:chy1982_008@nudt.edu.cn
  • Supported by:
    Natural Science Foundation of Hunan Province(2023JJ30631);National Level Project(2021ZD01403XX-01);Science and Technology Innovation Program of Hunan Province(2021RC3077)

摘要:

作为固定翼无人机(UAV)轮式起降的关键环节,地面滑跑过程的安全性直接决定了起降阶段的成功率。模型准确性及纠偏控制方式对仿真结果的可信度至关重要,直接影响实际飞行安全。本文围绕前三点式起落架固定翼无人机地面滑跑过程的三维动力学与纠偏控制约束特性开展研究,首先,提出了轮胎摩擦力连续函数近似模型和基于速度的侧力分析方法,满足无人机滑跑全过程模拟与实时仿真测试需求;其次,充分考虑起落架三维效应,建立了相对准确的滑跑过程三维动力学模型;再次,以滑跑纠偏所需向心力为突破点,建立了滑跑纠偏约束分析方法,并以试验无人机为例,分析并建立了前轮和方向舵可控性边界;最后,通过仿真测试验证了所提模型和约束分析方法的准确性及可行性。

关键词: 前三点式起落架, 地面滑跑, 滑跑动力学建模, 滑跑纠偏控制约束边界, 轮式起降

Abstract:

As a key aspect in the wheeled takeoff and landing of fixed-wing Unmanned Aerial Vehicles (UAVs), the safety of the taxiing process directly determines the success of the takeoff and landing procedures. The model accuracy and deviation correction control are crucial for the credibility of simulation results, and directly affect actual flight safety. This paper investigates the characteristics of the 3D dynamics and deviation correction control constraints in the taxiing process of the tricycle-gear fixed-wing UAV. Firstly, a continuous function approximation model of tire friction and a speed-based analysis method of lateral force are proposed to satisfy the demands of all states and real-time simulation of UAV taxiing process. Secondly, a relatively accurate 3D dynamic model of the taxiing deviation control process is established by fully considering the 3D effects of the landing gear. Thirdly, taking the centripetal force required for taxiing correction as the breakthrough point, a constraint analysis method for taxiing deviation is developed. Using a UAV as an example, the controllability boundaries of the front wheel and rudder of the UAV are analyzed and established. Finally, the accuracy and feasibility of the proposed modeling and constraint analysis method are verified through simulation.

Key words: tricycle gear, ground taxiing, dynamic modelling of taxiing, constraint boundary of taxiing correction cntrol, wheeled takeoff and landing

中图分类号: