航空学报 > 2022, Vol. 43 Issue (6): 526199-526199   doi: 10.7527/S1000-6893.2022.26199

水陆两栖飞机高支柱起落架的刹车振动行为

杜晓琼1, 李斌1, 罗琳胤2   

  1. 1. 西北工业大学 航空学院, 西安 710072;
    2. 中航通飞华南飞机工业有限公司, 珠海 519040
  • 收稿日期:2021-08-05 修回日期:2022-03-08 出版日期:2022-06-15 发布日期:2022-03-04
  • 通讯作者: 李斌,E-mail:leebin@nwpu.edu.cn E-mail:leebin@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(11872312);高等学校创新引智计划(BP0719007)

Braking vibration behavior of high strut landing gear of amphibious aircraft

DU Xiaoqiong1, LI Bin1, LUO Linyin2   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC General Huanan Aircraft Industry Co. Ltd., Zhuhai 519040, China
  • Received:2021-08-05 Revised:2022-03-08 Online:2022-06-15 Published:2022-03-04
  • Supported by:
    National Natural Science Foundation of China (11872312); Program of Introducing Talents of Discipline to Universities(BP0719007)

摘要: 以水陆两栖飞机高支柱起落架为研究对象,对飞机刹车滑跑时起落架的航向振动问题进行了研究。首先建立了可用于振动分析的起落架多体动力学模型,分别采用模态试验、落震试验和静力试验结果对起落架的固有模态、缓冲性能以及刚度进行充分校验,仿真结果与试验结果吻合很好,得到用于振动响应分析的刚柔耦合精确模型。随后加入刹车控制系统模型,研究了起落架从降落到刹车再到停飞的全过程振动响应,对比了恒力矩刹车、速度差PBM刹车控制和滑移率PID刹车控制3种条件下的刹车效果和起落架振动特性。结果表明:恒力矩刹车在力矩幅值超过23.4 kN·m时机轮进入打滑。滑移率PID控制系统较速度差PBM控制系统刹车距离减小19.17%,刹车时间缩短25.45%。但滑移率PID刹车控制系统作用下轮轴航向初始振动较大,通过调整初始滑移率上升到最佳滑移率的斜率,使得轮轴航向位移最大幅值减小31.24%。对于轮速传感器信号突变造成的系统扰动,速度差PBM刹车控制系统造成刹车失灵,滑移率PID刹车控制系统可迅速恢复,抗扰动能力强。

关键词: 起落架航向振动, 刹车振动, 刹车控制律, 刚柔耦合, 多体动力学

Abstract: The heading vibration of a certain type of high strut landing gear of amphibious aircraft is studied during the aircraft braking and sliding. A multi-body dynamics model of gear vibration is first established. The results of the modal test, drop test and static test are used to fully verify the modal, cushioning performance and stiffness performance of the landing gear, which show good agreement with the simulation results, thus obtaining the rigid-flexible coupling accurate model for gear heading vibration analysis. The model of the brake control system is then introduced to study the whole process of the landing gear vibration response from landing to braking and then to grounding. The braking efficiency and gear vibration characteristics of the constant braking torque, the speed difference PBM brake control system and the slip rate PID brake control system are compared. The results show that the wheel will lock when the braking torque amplitude exceeds 23.4 kN·m. Compared with the pressure-bias-modulated brake control system, the braking distance and braking time of the PID brake control system are reduced by 19.17% and 25.45%, respectively. However, the initial vibration of the wheel axle is relatively large under the action of the PID brake control system. Adjusting the slope of the initial slip rate to the optimum slip rate reduces the maximum amplitude of the wheel axle longitudinal displacement by 31.24%. Finally, to study the stability of the two kinds of brake systems, we add abrupt signal variation to the wheel speed sensor module. The results reveal that the PBM brake control system causes brake failure, while the PID brake control system can quickly recover, showing strong anti-disturbance ability.

Key words: heading vibration of landing gear, brake vibration, brake control law, rigid-flexible coupling, multi-body dynamics

中图分类号: