[1] 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5):1259-1265. HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese). [2] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12):023716. HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials:application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):023716(in Chinese). [3] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese). [4] 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2):624077. ZUO G, AI B C. Aerodynamic design of advanced space transportation system:review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):624077(in Chinese). [5] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3):1-9. LU Y, CAI Q Y, WANG F. Near space and reusable technology[J]. Missiles and Space Vehicles, 2018(3):1-9(in Chinese). [6] 苟建军, 胡嘉欣, 常越, 等. 高超声速飞行器热管理关键技术及研发进展[J]. 科技导报, 2020, 38(12):103-108. GOU J J, HU J X, CHANG Y, et al. Research progress of thermal management technologies for hypersonic flight vehicles[J]. Science & Technology Review, 2020, 38(12):103-108(in Chinese). [7] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953. [8] 向树红, 张敏捷, 童靖宇, 等. 高超声速飞行器主动式气膜冷却防热技术研究[J]. 装备环境工程, 2015, 12(3):1-7. XIANG S H, ZHANG M J, TONG J Y, et al. Research on active film cooling and heat-proof scheme for hypersonic vehicles[J]. Equipment Environmental Engineering, 2015, 12(3):1-7(in Chinese). [9] 李左飙, 温风波, 唐晓雷, 等. 基于深度学习的单排孔气膜冷却性能预测[J]. 航空学报, 2021, 42(4):524331. LI Z B, WEN F B, TANG X L, et al. Prediction of single-row hole film cooling performance based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524331(in Chinese). [10] SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3):036102. [11] DING R, WANG J H, HE F, et al. Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge[J]. Applied Thermal Engineering, 2020, 169:114949. [12] 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J/OL]. 空气动力学学报,(2021-11-20)[2022-01-29]. http://kns.cnki.net/kcms/detail/51.1192.TK.20211118.1453.003.html. SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J/OL]. Acta Aerodynamica Sinica, (2021-11-20)[2022-01-29]. http://kns.cnki.net/kcms/detail/51.1192.TK.20211118.1453.003.html (in Chinese). [13] 吴亚东, 朱广生, 蒋平, 等. 先进的热防护方法及在飞行器的应用前景初探[J]. 宇航总体技术, 2017, 1(1):60-65. WU Y D, ZHU G S, JIANG P, et al. Advanced thermal protection methods and applications in future vehicles[J]. Astronautical Systems Engineering Technology, 2017, 1(1):60-65(in Chinese). [14] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108:232-243. [15] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental study on combined cooling method for porous struts in supersonic flow[J]. Journal of Heat Transfer, 2018, 140(2):02201. [16] ZHAO L J, LIN J, WANG J H, et al. An experimental investigation on transpiration cooling for supersonic vehicle nose cone using porous material[J]. Applied Mechanics and Materials, 2014, 541-542:690-694. [17] ZHAO L J, WANG J H, MA J, et al. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model[J]. International Journal of Thermal Sciences, 2014, 84:207-213. [18] 林佳. 气动热及发散冷却研究[D]. 合肥:中国科学技术大学, 2014:90. LIN J. Study of aero-thermodynamics and transpiration cooling[D]. Hefei:University of Science and Technology of China, 2014:90(in Chinese). [19] DING R, WANG J H, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146:422-431. [20] 周子鹤, 苏浩, 贺菲, 等. 发散冷却系统冷却能力的数值分析[J]. 航空动力学报, 2021, 36(11):2363-2371. ZHOU Z H, SU H, HE F, et al. Numerical analysis on cooling capacity of transpiration cooling system[J]. Journal of Aerospace Power, 2021, 36(11):2363-2371(in Chinese). [21] 栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2):623937. LUAN Y, HE F, WANG J H. Transpiration cooling of nose-cone with forward-facing cavity:numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):623937(in Chinese). [22] 丁锐. 发散冷却在高超声速飞行器上的应用可行性研究[D]. 合肥:中国科学技术大学, 2020:168. DING R. Investigations on the application feasibility of transpiration cooling on hypersonic vehicles[D]. Hefei:University of Science and Technology of China, 2020:168(in Chinese). [23] 欧阳小龙. 多孔介质传热局部非热平衡效应的基础问题研究[D]. 北京:清华大学, 2014:147. OUYANG X L. Research on the local thermal non-equilibrium effect for heat transfer in porous media[D]. Beijing:Tsinghua University, 2014:147(in Chinese). [24] SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105:549-556. [25] HE F, WU N, RAN F Y, et al. Numerical investigation on the transpiration cooling of three-dimensional hypersonic inlet[J]. Aerospace Science and Technology, 2020, 106:106152. [26] XIONG Y B, ZHU Y H, JIANG P X. Numerical simulation of transpiration cooling for sintered metal porous strut of the scramjet combustion chamber[J]. Heat Transfer Engineering, 2014, 35(6-8):721-729. [27] LUO S B, MIAO Z C, LIU J, et al. Effects of coolants of double layer transpiration cooling system in the leading edge of a hypersonic vehicle[J]. Frontiers in Energy Research, 2021, 9:756820. |