[1] ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese). 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798. [2] BIANCHI M, MELINO F, PERETTO A, et al. Influence of water droplet size and temperature on wet compression: GT2007-27458[R]. New York: ASEM, 2007. [3] ZHENG Q, SUN Y F, LI S Y, et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine: GT2002-30590[R]. New York: ASEM, 2002. [4] LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796 (in Chinese). 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796. [5] CHAKER M, MEHER-HOMJI C B. Gas turbine power augmentation: Parametric study relating to fog droplet size and its influence on evaporative efficiency[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(9): 092001. [6] KLEINSCHMIDT R. Value of wet compression in gas-turbine cycles[J]. Mechanical Engineering, 1947, 69(2): 115-116. [7] HORLOCK J H. Compressor performance with water injection: 2001-GT-0343[R]. New York: ASME, 2001. [8] MYOREN C, TAKAHASHI Y, YAGI M, et al. Evaluation of axial compressor characteristics under overspray condition: GT2013-95402[R]. New York: ASME, 2013. [9] DE LUCIA M, LANFRANCHI C, BOGGIO V. Benefits of compressor inlet air cooling for gas turbine cogeneration plants[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(3): 598-603. [10] HILL P G. Aerodynamic and thermodynamic effects of coolant injection on axial compressors[J]. Aeronautical Quarterly, 1963, 14(4): 331-348. [11] YOUNG J. The fundamental equations of gas-droplet multiphase flow[J]. Multiphase Flow, 1995, 21(2): 175-191. [12] ZHENG Q, SUN Y F, LI S Y, et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine[J]. Journal of Turbomachinery, 2003, 125(3): 489-496. [13] ABDELWAHAB A. An investigation of the use of wet compression in industrial centrifugal compressors[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 741-750. [14] WHITE A J, MEACOCK A J. An evaluation of the effects of water injection on compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(4): 748-754. [15] BAGNOLI M, BIANCHI M, MELINO F, et al. Development and validation of a computational code for wet compression simulation of gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(1): 641-649. [16] KIM K H, KO H J, PEREZ-BLANCO H. Analytical modeling of wet compression of gas turbine systems[J]. Applied Thermal Engineering, 2011, 31(5): 834-840. [17] WANG T, KHAN J R. Overspray and interstage fog cooling in gas turbine compressor using stage-stacking scheme—Part Ⅰ: Development of theory and algorithm[J]. Journal of Thermal Science and Engineering Applications, 2010, 2(3): 031001. [18] KHAN J R, WANG T. Implementation of a non-equilibrium heat transfer model in stage-stacking scheme to investigate overspray fog cooling in compressors[J]. International Journal of Thermal Sciences, 2013, 68: 63-78. [19] SUN L X, ZHENG Q, LI Y J, et al. Understanding effects of wet compression on separated flow behavior in an axial compressor stage using CFD analysis[J]. Journal of Turbomachinery, 2011, 133(3): 031026. [20] SUN L X, ZHENG Q, LI Y J, et al. Numerical simulation of a complete gas turbine engine with wet compression[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(1): 012002. [21] LUO M C, ZHENG Q, SUN L X, et al. The effects of wet compression and blade tip water injection on the stability of a transonic compressor rotor[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(9): 092001. [22] WANG T, KHAN J R. Discussion of some myths/features associated with gas turbine inlet fogging and wet compression[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021001. [23] REID L, MOORE R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82: NASA TP-1338[R]. Washington, D.C. : NASA, 1978. [24] SUN L X. Study on wet compression performance of gas turbine and droplet motion[D]. Harbin: Harbin Engineering University, 2012 (in Chinese). 孙兰昕. 燃气轮机湿压缩性能与水滴运动研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [25] LIN F, WEN X Y, LUAN K. A preliminary study of compressor wet compression characteristics and its calculation model[J]. Journal of Engineering for Thermal Energy and Power, 1998, 13(6): 402-405 (in Chinese). 林枫, 闻雪友, 栾坤. 压气机的湿压缩特性及计算模型初步研究[J]. 热能动力工程, 1998, 13(6): 402-405. [26] LUO M C. The numerical simulation of inlet fogging effects on a transonic stage[D]. Harbin: Harbin Engineering University, 2011 (in Chinese). 罗铭聪. 进口加湿的跨音速压气机级气动性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. |