余军杨1, 傅文广1, 孙鹏1(), 张韬2, 王春雪2, 赵伟2
收稿日期:
2023-10-16
修回日期:
2023-11-10
接受日期:
2024-01-04
出版日期:
2024-01-15
发布日期:
2024-01-11
通讯作者:
孙鹏
E-mail:sp_hit@hotmail.com
基金资助:
Junyang YU1, Wenguang FU1, Peng SUN1(), Tao ZHANG2, Chunxue WANG2, Wei ZHAO2
Received:
2023-10-16
Revised:
2023-11-10
Accepted:
2024-01-04
Online:
2024-01-15
Published:
2024-01-11
Contact:
Peng SUN
E-mail:sp_hit@hotmail.com
Supported by:
摘要:
动力系统的进气畸变问题导致风扇性能下降、引发气动不稳定,从而对飞行器的安全构成潜在威胁,在军、民航空领域已受到广泛关注。为确保进气畸变条件下推进系统的可靠运行和飞行安全,本研究基于数值方法对某小涵道比涡扇发动机开展抗畸变风扇设计及扩稳研究。针对其畸变影响特征,采用非轴对称静子(NAS)布局来消除其不利影响,研究表明:NAS能够有效改善进气畸变条件下的风扇性能。相较于原型,在同流量工况下,绝热效率和总压比可分别增加1.37%和1.26%,稳定裕度可增加8.31%,实现了该NAS风扇的性能提升及扩稳目的;NAS设计直接作用于畸变区,有效改善了畸变区内的静叶冲角,抑制了静叶通道涡系结构的发展和迁移,较大程度减小静叶的扩压因子,从而有效消除了静叶的角区分离,使得静叶冲角周向分布相对均匀,有效改善风扇静叶内部流场,整体提高风扇的气动性能。此外,NAS设计还具有改善风扇后部内涵流场的潜力,使内涵出口的不均匀流场朝着周向均匀化方向发展,并且在有效减弱动态总压畸变强度、改善流场均匀性的同时,还兼具改善总温畸变的能力。
中图分类号:
余军杨, 傅文广, 孙鹏, 张韬, 王春雪, 赵伟. 进气畸变条件下非轴对称风扇设计及扩稳机理[J]. 航空学报, 2024, 45(16): 129725-129725.
Junyang YU, Wenguang FU, Peng SUN, Tao ZHANG, Chunxue WANG, Wei ZHAO. Design and stabilization mechanism of non-axisymmetric fans under inlet distortion conditions[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129725-129725.
1 | 李宏新, 谢业平. 从航空发动机视角看飞/发一体化问题[J]. 航空发动机, 2019, 45(6): 1-8. |
LI H X, XIE Y P. Fundamental issues of aircraft/engine integration from the perspective of aeroengine[J]. Aeroengine, 2019, 45(6): 1-8 (in Chinese). | |
2 | 唐杰, 鲁峰, 周文祥, 等. 进气道/发动机一体化多变量控制方法研究[J]. 推进技术, 2023, 44(1): 248-257. |
TANG J, LU F, ZHOU W X, et al. Inlet/engine integrated multivariable control method[J]. Journal of Propulsion Technology, 2023, 44(1): 248-257 (in Chinese). | |
3 | 郭懋. 先进概念战斗机气动性能飞发一体初步研究[D]. 南京: 南京航空航天大学, 2013. |
GUO M. Preliminary study on integrated aerodynamic characteristics of the fighter/engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
4 | ASHCRAFT S, PADRON A S, PASCIONI K A, et al. Review of propulsion technologies for N+3 subsonic vehicle concepts[R]. Washington, D.C.: NASA, 2011. |
5 | OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82: 1-23. |
6 | YU G, LI D, ZHANG Z Y. Numerical simulation for the differences between FTN/WPN engine models aerodynamic influence on BWB300 airframe[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 566-579. |
7 | SMITH A M O, ROBERTS H E. The jet airplane utilizing boundary layer air for propulsion[J]. Journal of the Aeronautical Sciences, 1947, 14(2): 97-109. |
8 | MENNICKEN M, SCHOENWEITZ D, SCHNOES M, et al. Conceptual fan design for boundary layer ingestion[C]∥Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
9 | MENNICKEN M, SCHOENWEITZ D, SCHNOES M, et al. Fan design assessment for BLI propulsion systems[J]. CEAS Aeronautical Journal, 2022, 13(1): 3-19. |
10 | AZIZ M A, OWIS F M, ABDELRAHMAN M M. Design optimization of a transonic-fan rotor using numerical computations of the full compressible Navier-Stokes equations and simplex algorithm[J]. International Journal of Rotating Machinery, 2014, 2014: 743154. |
11 | WERNICK A R, CHEN J P. Rotor blade design optimization for boundary layer ingesting inlet fan[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
12 | LIU C Y, IHIABE D, LASKARIDIS P, et al. A preliminary method to estimate impacts of inlet flow distortion on boundary layer ingesting propulsion system design point performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(9): 1528-1539. |
13 | HORLOCK J H. The use of circumferentially varying stagger guide vanes in an axial flow pump or compressor[J]. Journal of Turbomachinery, 1990, 112(2): 294-297. |
14 | TAYLOR J, HYNES T. The control of non-axisymmetric flow in axial turbomachinery using circumferentially varying stator exit angles[C]∥Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York: ASME, 2014. |
15 | 卢绪祥, 马玉鹏, 杜娟, 等. 周向畸变条件下压气机非轴对称导叶设计方法研究[J]. 推进技术, 2022, 43(12): 410-418. |
LU X X, MA Y P, DU J, et al. Design method of non-axisymmetric guide vane of compressor under circumferential distortion condition[J]. Journal of Propulsion Technology, 2022, 43(12): 410-418 (in Chinese). | |
16 | ZHANG M, DU J, ZHAO H L, et al. Design optimization of non-axisymmetric vane for an axial compressor under inlet distortion[J]. Journal of Thermal Science, 2023, 32(4): 1321-1334. |
17 | GUNN E J, HALL C A. Aerodynamics of boundary layer ingesting fans[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
18 | GUNN E J, HALL C A. Non-axisymmetric stator design for boundary layer ingesting fans[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
19 | GODARD B, NEGULESCU C. Fan design investigation on the airbus nautilius engine integration concept[C]∥Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
20 | LU H N, YANG Z, PAN T Y, et al. Non-uniform stator loss reduction design strategy in a transonic axial-flow compressor stage under inflow distortion[J]. Aerospace Science and Technology, 2019, 92: 347-362. |
21 | SUN P, FU W G, WANG H, et al. Numerical research on inlet total pressure distortion in a transonic compressor with non-axisymmetric stator[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(2): 667-678. |
22 | FU W G, SUN P. Effect of three non-axisymmetric stator schemes on compressor performance with distorted inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(10): 2044-2056. |
23 | YU J Y, FU W G, WANG W J, et al. Non-axisymmetric design and flow field analysis of boundary layer ingesting fans[J]. Aerospace Science and Technology, 2023, 140: 108429. |
24 | 傅文广, 王维佳, 孙鹏, 等. 附面层吸入条件下非轴对称静子对风扇流场影响数值研究[J]. 推进技术, 2024, 45(3): 165-176. |
FU W G, WANG W J, SUN P, et al. Numerical study on effects of non-axisymmetric stator on fan flow field under boundary layer ingestion[J]. Journal of Propulsion Technology, 2024, 45(3): 165-176 (in Chinese). | |
25 | 甘文彪, 周洲, 许晓平, 等. S弯进气道优化设计及分析[J]. 推进技术, 2014, 35(10): 1317-1324. |
GAN W B, ZHOU Z, XU X P, et al. S-duct inlet optimal design and analysis[J]. Journal of Propulsion Technology, 2014, 35(10): 1317-1324 (in Chinese). | |
26 | 宁浩, 侯安平, 张明明, 等. 畸变指数比例可调的组合插板数值模拟研究[J]. 推进技术, 2023, 44(2): 49-57. |
NING H, HOU A P, ZHANG M M, et al. Numerical simulation on combinational baffle with adjustable ratio of distortion indexes[J]. Journal of Propulsion Technology, 2023, 44(2): 49-57 (in Chinese). | |
27 | 周游天, 李军, 彭生红, 等. 插板进气畸变与压气机的耦合数值模拟[J]. 航空动力学报, 2017, 32(3): 568-576. |
ZHOU Y T, LI J, PENG S H, et al. Numerical simulation of flat baffle inlet distortion coupled with compressor[J]. Journal of Aerospace Power, 2017, 32(3): 568-576 (in Chinese). | |
28 | 张恺玲, 李思怡, 段毅, 等. 进气道流动中SST湍流模型参数的不确定度量化[J]. 航空学报, 2023, 44(S2): 89-99. |
ZHANG K L, LI S Y, DUAN Y, et al. Uncertainty quantification of SST turbulence model parameters in inlet flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 89-99 (in Chinese). | |
29 | SUN W. Assessment of advanced RANS turbulence models for prediction of complex flows in compressors[J]. Chinese Journal of Aeronautics, 2023, 36(9): 162-177. |
30 | 杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124. |
YANG J G, WU H. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124 (in Chinese). | |
31 | 陈云永, 万科, 杨小贺, 等. 大涵道比风扇/增压级叶尖间隙影响研究[J]. 航空学报, 2017, 38(9): 520951. |
CHEN Y Y, WAN K, YANG X H, et al. Influence of tip clearance on high-bypass-ratio fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520951 (in Chinese). | |
32 | 钟亚飞, 马宏伟, 郭君德, 等. 航空发动机进气总压畸变地面试验数据处理方法综述[J]. 航空发动机, 2021, 47(1): 72-85. |
ZHONG Y F, MA H W, GUO J D, et al. Review of ground test data processing method of aeroengine inlet total pressure distortion[J]. Aeroengine, 2021, 47(1): 72-85 (in Chinese). | |
33 | 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南: [S]. 北京: 国防科学技术工业委员会, 2004. |
National Defense Science Technology and Industry Commision. Guidelines for the assessment of total pressure distortion of aviation turbojets and turbofan engines: [S]. Beijing: National Defense Science Technology and Industry Commission, 2004 (in Chinese). | |
34 | YANG Z, LU H N, PAN T Y, et al. Numerical investigation on the influences of boundary layer ingestion on tip leakage flow structures and losses in a transonic axial-flow fan[J]. Journal of Fluids Engineering, 2021, 143(11): 111207. |
35 | SCHOENWEITZ D, SCHNELL R. Development and evaluation of a performance estimation methodology for fans operating within non-homogeneous inflow[C]∥Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016. |
36 | 秦勇. 合成射流控制压气机叶栅角区分离的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIN Y. Mechanisms of corner separation control in compressor cascades with synthetic jets[D].Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
37 | LIEBLEIN S, BRODERICK R L, SCHWENK F C. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements[M]. Washington, D.C.: NACA, 1953. |
38 | LIEBLEIN S. Aerodynamic design of axial-flow compressors-Chapter Ⅵ: Experimental flow in two-dimensional cascades. NASA SP-36[R]. Washington, D.C.: NASA, 1965. |
39 | SANS J, BROUCKAERT J F, HIERNAUX S. Experimental and numerical investigations of the solidity effect on a linear compressor cascade[C]∥Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
40 | 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口温度畸变评定指南: [S]. 北京: 国防科学技术工业委员会, 2002. |
National Defense Science Technology and Industry Commision. Guidelines for the assessment of temperature distortion of aviation turbojets and turbofan engines: [S]. Beijing: National Defense Science Technology and Industry Commission, 2002 (in Chinese). |
[1] | 张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114. |
[2] | 张定华, 何智伟, 张学宝, 罗明. 叶片多尺度表面对压气机气动性能影响及其高性能制造研究进展[J]. 航空学报, 2024, 45(13): 629642-629642. |
[3] | 农历, 盛子帅, 冼军, 张怀宝. 基于高精度算法的结冰翼型分离流动数值模拟[J]. 航空学报, 2023, 44(S2): 729291-729291. |
[4] | 王浩浩, 高丽敏, 杨光, 吴宝海. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169-128169. |
[5] | 李秋琳, 周莉, 孙鹏, 史经纬, 王占学. 出口宽高比对S弯喷管流固耦合特性影响[J]. 航空学报, 2023, 44(14): 628204-628204. |
[6] | 曹传军, 刘天一, 朱伟, 王进春. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报, 2023, 44(12): 27824-027824. |
[7] | 孙志坤, 史志伟, 张伟麟, 李铮, 孙琪杰. 等离子体激励器对高速翼型升阻特性的影响[J]. 航空学报, 2022, 43(S2): 23-39. |
[8] | 曹明, 黄金泉, 周健, 陈雪峰, 鲁峰, 魏芳. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573-625573. |
[9] | 安利平, 王昊, 王掩刚, 朱自环. 跨声速压气机湿压缩性能及流动特性[J]. 航空学报, 2022, 43(9): 126024-126024. |
[10] | 卫永斌, 段卓毅, 郭兆电, 杨成凤. 短舱气动性能参数化研究[J]. 航空学报, 2022, 43(11): 526742-526742. |
[11] | 杨钊, 李杰, 牛笑天. 层流机翼飞行验证平台雷诺数效应分析及修正[J]. 航空学报, 2022, 43(11): 527287-527287. |
[12] | 唐松祥, 李杰, 张恒, 牛笑天. 某层流验证机中央翼段高速巡航气动性能优化设计[J]. 航空学报, 2022, 43(11): 526766-526766. |
[13] | 饶崇, 张铁军, 魏闯, 刘影. 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报, 2021, 42(S1): 726387-726387. |
[14] | 熊冰, 范晓樯, 魏金鹏, 程杰, 赵志刚. 飞发一体化算力体系及算力参数敏感性[J]. 航空学报, 2021, 42(8): 525808-525808. |
[15] | 胡伟杰, 黄增辉, 刘学军, 吕宏强. 基于自动核构造高斯过程的导弹气动性能预测[J]. 航空学报, 2021, 42(4): 524093-524093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学