[1] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese). [2] CHERNYSHEN S L, KISELEV A P, KURYACHII A P. Laminar flow control research at TsAGI:Past and present[J]. Progress in Aerospace Sciences, 2011, 47(3):169-185. [3] ZHANG X Y. A review of the attachment line instability for hybrid laminar flow control[J]. Civil Aircraft Design & Research, 2017(4):42-51. [4] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524, 540. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524, 540(in Chinese). [5] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flowcontrol technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese). [6] RONALD D. Overview of laminar flow control:NASA TP-208705[R]. Washington, D.C.:NASA, 1998. [7] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F,ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese). [8] 李悦立, 李栋, 杨永. 后掠翼被动层流控制研究[J]. 力学学报, 2011, 43(1):45-54. LI Y L, LI D, YANG Y. On the passive laminar flow control technique of swept wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):45-54(in Chinese). [9] CHERNYSHEV S L, GAMIRULLIN M D, KHOMICH V Y, et al. Electrogasdynamic laminar flow control on a swept wing[J]. Aerospace Science and Technology, 2016, 59:155-161. [10] LI F, CHOUDHARI M, CHANG C L, et al. Computational modeling of roughness-based laminar flow control on a subsonic swept wing[J]. AIAA Journal, 2011, 49(3):520-529. [11] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. [12] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231. [13] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese). [14] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795. [15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [16] 许朕铭, 韩忠华, 陈静, 等. 适用于中程民机的前掠自然层流机翼设计[J]. 西北工业大学学报, 2017, 35(S1):36-42. XU ZM, HAN Z H, CHEN J, et al. Design research of forward swept natural laminar flow wing suitable for medium range civil[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1):36-42(in Chinese). [17] 王威, 王军, 杨伟刚, 等. 基于熵产方法的跨音速翼型减阻优化设计[J]. 华中科技大学学报(自然科学版), 2018, 46(2):1-6. WANG W, WANG J, YANG W G, et al. Entropy generation method for aerodynamic optimization design of transonic airfoil to drag minimization[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(2):1-6(in Chinese). [18] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413. [19] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part II:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434. [20] QIAO L, BAI J Q, HUA J, et al. Combination of DES and DDES with a correlation based transition model[J]. Applied Mechanics and Materials, 2013, 444-445:374-379. [21] ZHOU L, GAO Z H, DU Y M. Flow-dependent DDES/γ-Reθt coupling model for the simulation of separated transitional flow[J]. Aerospace Science and Technology, 2019, 87:389-403. [22] 易淼荣, 赵慧勇, 乐嘉陵. 基于IDDES方法和γ-Reθ转捩模型的粗糙颗粒诱导高速边界层强制转捩模拟[J]. 推进技术, 2020, 41(4):778-790. YI M R, ZHAO H Y, LE J L. Roughnessinduced high speed boundary layer forced transition simulation using γ-Reθ transition model based on IDDES method[J]. Journal of Propulsion Technology, 2020, 41(4):778-790(in Chinese). [23] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报, 2019, 40(8):122726. YI M R, ZHAO H Y, LE J L, et al.γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122726(in Chinese). [24] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [25] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. |