[1] 朱鸿绪, 刘燕斌, 曹瑞, 等. 高超声速飞行器底层性能评价指标的可行性分析[J]. 航空学报, 2020, 41(3):323259. ZHU H X, LIU Y B, CAO R, et al. Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):323259(in Chinese). [2] 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8):623686. CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623686(in Chinese). [3] 吴大方, 林鹭劲, 吴文军, 等. 1500℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7):223612. WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):223612(in Chinese). [4] AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):425-449. [5] BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Heat reduction using conterflowing jet for a nose cone with aerodisk in hypersonic flow[J]. Aerospace Science and Technology, 2014, 39:652-665. [6] HUANG W, LIU J, XIA Z X. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica, 2015, 115:24-31. [7] GERDROODBARY M B, HOSSEINALIPOUR S M. Numerical simulation of hypersonic flow over highly blunted cones with spike[J]. Acta Astronautica, 2010, 67(1/2):180-193. [8] GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5):537-543. [9] SCHNEPF C, WYSOCKI O, SCHVLEIN E. Wave drag reduction due to a self-aligning aerodisk[C]//Progress in Flight Physics-Volume 7. Les Ulis:EDP Sciences, 2015:475-488. [10] KREMEYER K. Lines of energy deposition for supersonic/hypersonic temperature/drag-reduction and vehicle control[J]. AIP Conference Proceedings, 2008, 997(1):353-366. [11] SPERBER D, ECKEL H A, STEIMER S, et al. Objectives of laser-induced energy deposition for active flow control[J]. Contributions to Plasma Physics, 2012, 52(7):636-643. [12] RIGGINS D, NELSON H F, JOHNSON E. Blunt-body wave drag reduction using focused energy deposition[J]. AIAA Journal, 1999, 37(4):460-467. [13] LOPATOFF M. Wind-flow study of pressure-drag reduction at transonic speed by projecting a jet of air from the nose of a prolate spheroid of fineness ratio 6[R]. Washington, D.C.:NACA, 1951. [14] LOVE E S. The effects of a small jet of air exhausting from the nose of a body of revolution in supersonic flow[R]. Washington, D.C.:NACA, 1952. [15] WATT G A. An experimental investigation of a sonic jet directed upstream against a uniform supersonic flow[R]. Toronto:Institute of Aerophysics, University of Toronto, 1956. [16] ROMEO D J, STERRETT J R. Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream[M]. Washington, D.C.:NASA, 1963. [17] JARVINEN P O,ADAMS R H. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles[R].New York:ASME,1970. [18] FOMIN V M, MASLOV A A, SHASHKIN A P, et al. Flow regimes formed by a counterflow jet in a supersonic flow[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(5):757-764. [19] MALMUTH N D, FOMIN V M, MASLOV A A. Influence of a counterflow plasma jet on supersonic blunt body pressures:AIAA-1999-4883[R]. Reston:AIAA, 1999. [20] FOMIN V M, MASLOV A A, MALMUTH N D, et al. Influence of a counterflow plasma jet on supersonic blunt-body pressures[J]. AIAA Journal, 2002, 40(6):1170-1177. [21] SHANG J S, HAYES J, WURTZLER K, et al. Jet-spike bifurcation in high-speed flows[J]. AIAA Journal, 2001, 39(6):1159-1165. [22] SHANG J S, HAYES J, MENART J. Hypersonic flow over a blunt body with plasma injection[J]. Journal of Spacecraft and Rockets, 2002, 39(3):367-375. [23] SHANG J S. Plasma injection for hypersonic blunt-body drag reduction[J]. AIAA Journal, 2002, 40(6):1178-1186. [24] 田婷, 阎超. 超声速场中的反向喷流数值模拟[J]. 北京航空航天大学学报, 2008, 34(1):9-12. TIAN T, YAN C. Numerical simulation on opposing jet in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1):9-12(in Chinese). [25] 邓立君. 高超声速楔形体逆向喷流减阻及前缘优化数值研究[D]. 哈尔滨:哈尔滨工业大学, 2011. DENG L J. Numerical study on drag reduction of reverse jet on a hypersonic wedge and its shape optimizations[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese). [26] 戎宜生. 飞行器迎风前缘逆喷与发汗防热机理及复杂流动算法研究[D]. 长沙:国防科技大学, 2012. RONG Y S. Research on the thermal protection by opposing jet and transpiration for vehicle leading edge and the complex flow algorithm[D]. Changsha:National University of Defense Technology, 2012(in Chinese). [27] 陆海波. 迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究[D]. 长沙:国防科技大学, 2012. LU H B. Research on complicated flow field and heat transfer characteristic of forward-facing cavity combined with opposing jet fortified thermal protection configuration[D]. Changsha:National University of Defense Technology, 2012(in Chinese). [28] ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228:163-177. [29] 李珺,王俊峰,赵雅甜,等.面向非设计工况的激波针-喷流复合构型研究[J].航空学报, 2022, 43(9):125949. LI J, WANG J F, ZHAO Y T, et al. Research on combinational configuration of spike and multi-jets in off-design regimes[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):125949(in Chinese). [30] FARR R, CHANG C L, JONES J H, et al. On the comparison of the long penetration mode (LPM) supersonic counterflowing jet to the supersonic screech jet:AIAA-2015-3126[R]. Reston:AIAA, 2015. [31] VENKATACHARI B S, CHENG G, CHANG C L, et al. Long penetration mode counterflowing jets for supersonic slender configurations-A numerical study:AIAA-2013-2662[R]. Reston:AIAA, 2013. [32] VENKATACHARI B S, MULLANE M, CHENG G, et al. Numerical study of counterflowing jet effects on supersonic slender-body configurations:AIAA-2015-3010[R]. Reston, Virginia:AIAA, 2015. [33] DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7):1056-1071. [34] MARLEY C D, RIGGINS D W. Numerical study of novel drag reduction techniques for hypersonic blunt bodies[J]. AIAA Journal, 2011, 49(9):1871-1882. [35] ZHANG W Q, WANG X, ZHANG Z J, et al. Transient numerical simulation of hemispherical cone with combined opposing jet in hypersonic flow[J]. Acta Astronautica, 2020, 175:327-337. [36] SHEN B X, LIU W Q. Thermal protection performance of opposing jet generating with solid fuel[J]. Acta Astronautica, 2018, 144:90-96. [37] DESAI S, PRAKASH K V, KULKARNI V, et al. Universal scaling parameter for a counter jet drag reduction technique in supersonic flows[J]. Physics of Fluids, 2020, 32(3):036105. [38] FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2):337-368. [39] 纪文英. 附属杆对圆柱绕流减阻特性的三维数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2008. JI W Y. Three-dimensional numerical simulation study on drag reduction characteristics of auxiliary rod around cylinder[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese). [40] ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160:62-75. [41] EGHLIMA Z, MANSOUR K, FARDIPOUR K. Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica, 2018, 143:92-104. [42] ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 131:944-964. [43] SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77:696-703. [44] LI L Q, HUANG W, YAN L. Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows[J]. Aerospace Science and Technology, 2017, 68:77-89. [45] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究[J]. 物理学报, 2012, 61(18):184401. NIE T, LIU W Q. Study of coupled fluid and solid for a hypersonic lending edge[J]. Acta Physica Sinica, 2012, 61(18):184401(in Chinese). [46] WANG X Y, YAN C, ZHENG W L, et al. Laminar and turbulent heating predictions for mars entry vehicles[J]. Acta Astronautica, 2016, 128:217-228. [47] HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1):233-235. |