[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1531. [2] COAKLEY T J, HORSTMAN C C, MARVIN J G, et al. Turbulence compressibility corrections:NASA Technical Memorandum 108827[R]. Washington, D.C.:NASA, 1994. [3] RUBESIN M W. Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows:NASA Contractor Report[R]. Washington, D.C.:NASA, 1990. [4] VUONG S T, COAKLEY T J. Modeling of turbulence for hypersonic flows with and without separation:AIAA-1987-0286[R]. Reston:AIAA, 1987. [5] KRIST S L, BIEDRON R T, RUMSEY C L. CFL3D user's manual (version 5.0)[S]. Hampton:NASA, 1998. [6] GREENSHIELDS C J, WELLER H G, GASPARINI L, et al. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows[J]. International Journal for Numerical Methods in Fluids, 2010, 63(1):1-21. [7] WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. La Canada:DCW Industries, Inc, 2006. [8] ZHANG H, CRAFT T J, IACOVIDES H. The formulation of the RANS equations for supersonic and hypersonic turbulent flows[J]. The Aeronautical Journal, 2021, 125(1285):525-555. [9] SUTHERLAND W. The viscosity of gases and molecular force[J]. Philosophical Magazine, 2009(36):507-531. [10] POLING B E, PRAUSNITZ J M, O'CONNELL J P. The properties of gases and liquids[M]. 5th ed. New York:Mcgraw-Hill, 2004. [11] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics, 2001, 174(1):38-80. [12] VAN ALBADA G, VAN LEER B, ROBERTS W W. A comparative study of computational methods in cosmic gas dynamics[J]. Astronomy and Astrophysics, 1982, 108:76-84. [13] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass transfer, 2003, 4(1):625-632. [14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [15] KUSSOY M I, HORSTMAN C C. Documentation of two-and three-dimensional hypersonic shock wave/turbulent boundary layer interaction flows:NASA Technical Memorandum 101075[R]. Washington, D.C.:NASA, 1989. [16] CORATEKIN T, VAN KEUK J, BALLMANN J. Performance of upwind schemes and turbulence models in hypersonic flows[J]. AIAA Journal, 2004, 42(5):945-957. [17] GEORGIADIS N J, RUMSEY C L, HUANG G P. Revisitingturbulence model validation for high-Mach number axisymmetric compression corner flows:AIAA-2015-0316[R]. Reston:AIAA, 2015. [18] OLSEN M, COAKLEY T, LILLARD R. The lag model applied to high speed flows:AIAA-2005-0101[R]. Reston:AIAA, 2005. [19] 刘景源. SST湍流模型在高超声速绕流中的改进[J].航空学报, 2012, 33(12):2192-2201. LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2192-2201(in Chinese). [20] GEORGIADIS N, YODER D. Recalibration of theshear stress transport model to improve calculation of shock separated flows:AIAA-2013-0685[R]. Reston:AIAA, 2013. [21] HOLDEN M, WADHAMS T, MACLEAN M,et al. Experimental studies of shock wave/turbulent boundary layer interaction in high Reynolds number supersonic and hypersonic flows to evaluate the performance of CFD codes:AIAA-2010-4468[R]. Reston:AIAA, 2010. [22] 孙东,刘朋欣,沈鹏飞,等.马赫数6柱-裙激波/边界层干扰直接模拟[J].航空学报, 2021, 42(12):124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):124681(in Chinese). |