航空学报 > 2022, Vol. 43 Issue (5): 225363-225363   doi: 10.7527/S1000-6893.2021.25363

飞行器结构布局与尺寸混合优化方法

胡嘉欣1, 芮姝2, 高瑞朝2, 苟建军1, 龚春林1   

  1. 1. 西北工业大学 航天学院, 陕西省空天飞行器设计重点实验室, 西安 710072;
    2. 北京空天技术研究所, 北京 100074
  • 收稿日期:2021-02-04 修回日期:2021-03-18 发布日期:2021-04-29
  • 通讯作者: 龚春林 E-mail:leonwood@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金(51806175);中央高校基本科研业务费专项(3102019HTXM004)

Hybrid optimization method for structural layout and size of flight vehicles

HU Jiaxin1, RUI Shu2, GAO Ruichao2, GOU Jianjun1, GONG Chunlin1   

  1. 1. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Beijing Aerospace Technology Institute, Beijing 100074, China
  • Received:2021-02-04 Revised:2021-03-18 Published:2021-04-29
  • Supported by:
    National Natural Science Foundation of China (51806175); Fundamental Research Funds for the Central Universities (3102019HTXM004)

摘要: 针对飞行器结构轻量化设计中的布局和尺寸优化问题,提出了一种高效的混合优化方法。在传统的基结构优化方法中引入尺寸变量,构建结构布局与尺寸混合优化模型,并以遗传算法为基本搜索方法,设计了统一描述0-1型离散布局变量和连续尺寸变量的染色体,建立了结构布局与尺寸混合优化的求解流程。由于种群规模较大,在求解过程中引入了神经网络代理模型,通过预估种群个体的优劣,缩减每一代中需要精确计算的个体数目。以含有55个布局变量和55个尺寸变量的机翼结构优化问题作为算例,验证了该方法的可行性,优化结果相比传统基结构法减重13%,且引入代理模型可使计算成本降低约50%。

关键词: 飞行器结构设计, 混合优化, 布局优化, 尺寸优化, 遗传算法(GA), 代理模型

Abstract: An efficient hybrid optimization method is proposed to solve the problem of layout and size optimization in lightweight structural design of aircraft. A layout-size hybrid optimization model is constructed by introducing size variables into the traditional ground structure method. The Genetic Algorithm (GA) is used as the basic search method, and the chromosome is designed to uniformly describe the 0-1 type discrete layout variables and continuous size variables, and the solution process of the hybrid layout-size optimization of the structure is established. The neural network agent model is introduced in the solution process because of the large size of the population. By predicting the individual population, the number of individuals that need to be accurately calculated in each generation is reduced. A wing structure optimization design with 55 layout variables and 55 size variables is taken as an example, and the results verify the feasibility of the method. Compared with the traditional ground structure method, the new method can further reduce the weight by 13%. Furthermore, the introduction of the agent model reduces the computational cost by about 50%.

Key words: flight vehicle structure design, hybrid optimization, layout optimization, size optimization, genetic algorithm (GA), agent model

中图分类号: