[1] 王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020, 41(S1):723758. WANG J, GU W B, DOU L Y. Leader-Follower formation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723758(in Chinese). [2] GROSS H M, DEBES K, EINHORN E, et al. Mobile robotic rehabilitation assistant for walking and orientation training of stroke patients:A report on work in progress[C]//IEEE International Conference on Systems, Man, and Cybernetics. Piscataway:IEEE Press, 2014:1880-1887. [3] CHUNG W, KIM H, YOO Y, et al. The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder[J]. IEEE Transactions on Industrial Electronics, 2011, 59(8):3156-3166. [4] FERREIRA B Q, KARIPIDOU K, ROSA F, et al. A study on trust in a robotic suitcase[C]//International Conference on Social Robotics, 2016:179-189. [5] PERDOCH M, BRADLEY D M, CHANG J K, et al. Leader tracking for a walking logistics robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2015:2994-3001. [6] 宋闯, 赵佳佳, 王康, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(S1):723756. SONG C, ZHAO J J, WANG K, et al. A survey of few shot learning based on intelligent perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723756(in Chinese). [7] 余铎, 王耀南, 毛建旭, 等. 基于视觉的移动机器人目标跟踪方法[J]. 仪器仪表学报, 2019, 40(1):227-235. YU D, WANG Y N, MAO J X, et al. Vision-based object tracking method of mobile robot[J]. Chinese Journal of Scientific Instrument. 2019, 40(1):227-235(in Chinese). [8] 孟祥瑞. 基于多线激光雷达的移动机器人环境感知与导航控制研究[D]. 北京:中国科学院大学, 2018:49-63. MENG X R. Research on environmental perception and navigation control for mobile robots based on 3D LiDAR[D]. Beijing:University of Chinese Academy of Sciences, 2018:49-63(in Chinese). [9] 梁栋, 高赛, 孙涵, 等. 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报, 2020, 41(9):323733. LIANG D, GAO S, SUN H, et al. UAV detection in motion cameras combining kernelized correlation filters and deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):323733(in Chinese). [10] DOISY G, JEVTIC A, LUCET E, et al. Adaptive person-following algorithm based on depth images and mapping[C]//IROS Workshop on Robot Motion Planning. Piscataway:IEEE Press, 2012. [11] HU J S, WANG J J, HO D M. Design of sensing system and anticipative behavior for human following of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2013, 61(4):1916-1927. [12] ISLAM M J, HONG J, SATTAR J. Person-following by autonomous robots:A categorical overview[J]. The International Journal of Robotics Research, 2019, 38(14):1581-1618. [13] YOON Y, YOON H, KIM J. Depth assisted person following robots[C]//IEEE RO-MAN. Piscataway:IEEE Press, 2013:330-331. [14] YUN W, KIM D, LEE J. Person following with obstacle avoidance based on multi-layered mean shift and force field method[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway:IEEE Press, 2010:3813-3816. [15] NIKDEL P, SHRESTHA R, VAUGHAN R. The hands-free push-cart:Autonomous following in front by predicting user trajectory around obstacles[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018:4548-4554. [16] TASAKI R, SAKURAI H, TERASHIMA K. Moving target localization method using foot mounted acceleration sensor for autonomous following robot[C]//IEEE Conference on Control Technology and Applications. Piscataway:IEEE Press, 2017:827-833. [17] REDMON J, FARHADI A. YOLOv3:An incremental improvement[DB/OL]. arXiv preprint:1804.02767,2018. [18] PANG L, CAO Z Q, YU J Z, et al. A robust visual person-following approach for mobile robots in disturbing environments[J]. IEEE Systems Journal, 2020, 14(2):2965-2968. [19] PANG L, CAO Z Q, YU J Z, et al. An efficient 3D pedestrian detector with calibrated RGB camera and 3D LiDAR[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2019:2902-2907. [20] BLAIR W D, BRANDT-PEARCE M. NNJPDA for tracking closely spaced Rayleigh targets with possibly merged measurements[C]//Signal and Data Processing of Small Targets. Piscataway:IEEE Press, 1999:396-408. [21] LU D V, HERSHBERGER D, SMART W D. Layered cost maps for context-sensitive navigation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2014:709-715. [22] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107. [23] RÖSMANN C, HOFFMANN F, BERTRAM T. Integrated online trajectory planning and optimization in distinctive topologies[J]. Robotics and Autonomous Systems, 2017, 88:142-153. |