1 |
谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.
|
|
XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2009 (in Chinese).
|
2 |
DENG Z G, BENDER M, ZUS F, et al. Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers[J]. Radio Science, 2011, 46( 6): RS6007.
|
3 |
姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56( 7): 2218- 2227.
|
|
YAO Y B, HE C Y, ZHANG B, et al. A new global zenith tropospheric delay model GZTD[J]. Chinese Journal of Geophysics, 2013, 56( 7): 2218- 2227 (in Chinese).
|
4 |
章迪. GNSS对流层天顶延迟模型及映射函数研究[J]. 测绘学报, 2022, 51( 9): 1984.
|
|
ZHANG D. The study of the GNSS tropospheric zenith delay model and mapping function[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51( 9): 1984 (in Chinese).
|
5 |
Konno H. Design of an aircraft landing system using dual-frequency GNSS [D]. Stanford: Stanford University, 2008, 13- 15.
|
6 |
喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报, 2019, 40( 3): 022200.
|
|
YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40( 3): 022200 (in Chinese).
|
7 |
CHENG J H, LI J X, LI L, et al. Carrier phase-based ionospheric gradient monitor under the mixed Gaussian distribution[J]. Remote Sensing, 2020, 12( 23): 3915.
|
8 |
高利春, 高铭阳, 陈晓芳, 等. 基于SINS/GBAS组合导航的高精度进近着陆导航技术[J]. 系统工程与电子技术, 2023, 45( 1): 210- 220.
|
|
GAO L C, GAO M Y, CHEN X F, et al. High precision approach-and-landing navigation technology based on SINS/GBAS integrated navigation[J]. Systems Engineering and Electronics, 2023, 45( 1): 210- 220 (in Chinese).
|
9 |
MCGRAW G A. Tropospheric error modeling for high integrity airborne GNSS navigation[C]∥ Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2012: 158- 166.
|
10 |
KHANAFSEH S, VON ENGELN A, PERVAN B, et al. Tropospheric duct anomaly threat model for high integrity and high accuracy navigation[C]∥ Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+2016), ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation. Manassas: ION, 2016: 1609- 1616.
|
11 |
刘黎军, 夏俊明, 白伟华, 等. 蒸发波导对GNSS海面反射信号有效散射区域的影响[J]. 地球物理学报, 2019, 62( 2): 499- 507.
|
|
LIU L J, XIA J M, BAI W H, et al. Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface[J]. Chinese Journal of Geophysics, 2019, 62( 2): 499- 507 (in Chinese).
|
12 |
CHEN B Y, LIU Z Z, WONG W K, et al. Detecting water vapor variability during heavy precipitation events in Hong Kong using the GPS tomographic technique[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34( 5): 1001- 1019.
|
13 |
TUNALı E, ÖZLÜDEMIR M T. GNSS PPP with different troposphere models during severe weather conditions[J]. GPS Solutions, 2019, 23( 3): 82.
|
14 |
辛蒲敏, 王志鹏. 非标称对流层误差对GBAS完好性的影响[J]. 北京航空航天大学学报, 2017, 43( 9): 1882- 1890.
|
|
XIN P M, WANG Z P. Impact of non-nominal troposphere error on GBAS integrity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43( 9): 1882- 1890 (in Chinese).
|
15 |
GUILBERT A, MILNER C, MACABIAU C. Characterization of tropospheric gradients for the ground-based augmentation system through the use of numerical weather models[J]. Navigation, 2017, 64( 4): 475- 493.
|
16 |
于耕, 王寒, 赵龙. 非标称对流层误差对地基增强系统完好性的影响[J]. 科学技术与工程, 2018, 18( 31): 235- 240.
|
|
YU G, WANG H, ZHAO L. The impact of non-nominal troposphere error on ground-based augmentation systems integrity[J]. Science Technology and Engineering, 2018, 18( 31): 235- 240 (in Chinese).
|
17 |
GUILBERT A, MILNER C, MACABIAU C. Troposphere Reassessment in the scope of MC/MF Ground Based Augmentation System (GBAS) [C]∥ Proceedings of the ION 2015 Pacific PNT Meeting. Manassas: ION, 2015: 763- 772.
|
18 |
WANG Z P, XIN P M, LI R, et al. A method to reduce non-nominal troposphere error[J]. Sensors, 2017, 17( 8): 1751.
|
19 |
YEH S J, JAN S S. GBAS airport availability simulation tool[J]. GPS Solutions, 2016, 20( 2): 283- 288.
|
20 |
LI L, SHI H D, JIA C, et al. Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator[J]. GPS Solutions, 2018, 22( 2): 39.
|
21 |
LI L, WANG H, JIA C, et al. Integrity and continuity allocation for the RAIM with multiple constellations[J]. GPS Solutions, 2017, 21( 4): 1503- 1513.
|
22 |
FELUX M, LEE J Y, HOLZAPFEL F. GBAS ground monitoring requirements from an airworthiness perspective[J]. GPS Solutions, 2015, 19( 3): 393- 401.
|
23 |
RIFE J H, PULLEN S P. The impact of measurement biases on availability for category Ⅲ LAAS[J]. Navigation, 2005, 52( 4): 215- 228.
|
24 |
ZHAO Y X, CHENG C, LI L, et al. BDS signal-in-space anomaly probability analysis over the last 6 years[J]. GPS Solutions, 2021, 25( 2): 49.
|
25 |
韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50( 12): 1751- 1761.
|
|
HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50( 12): 1751- 1761 (in Chinese).
|
26 |
KHANAFSEH S, JOERGER M, PERVAN B, et al. Accounting for tropospheric anomalies in high integrity and high accuracy positioning applications[C]∥ Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Manassas: ION, 2011: 513- 522.
|
27 |
HUANG J D, VAN GRAAS F. Comparison of tropospheric decorrelation errors in the presence of severe weather conditions in different areas and over different baseline lengths[J]. Navigation, 2007, 54( 3): 207- 226.
|
28 |
YU S W, LIU Z Z. Tropical cyclone-induced periodical positioning disturbances during the 2017 Hato in the Hong Kong region[J]. GPS Solutions, 2021, 25( 3): 109.
|
29 |
HUANG J D, VAN GRAAS F, COHENOUR C. Characterization of tropospheric spatial decorrelation errors over a 5-km baseline[J]. Navigation, 2008, 55( 1): 39- 53.
|
30 |
Lacey L N. Criteria for approval of category III weather minima for take-off, landing, and rollout: AC 120-28D[R]. Washington, D.C.: FAA, 2009.
|
31 |
European Aviation Safety Agency (EASA). Certification specifications for all weather operations, Subpart 1, automatic landing systems (CS-AWO 131) [S]. Brussels: European Aviation Safety Agency, 2003.
|
32 |
International Civil Aviation Organization. Ⅱ/Ⅲ development baseline SARPs—draft proposed changes to Annex 10, Volume Ⅰ [S]. Montreal: International Civil Aviation Organization, 2010.
|
33 |
SCHUSTER W, OCHIENG W. Harmonisation of category-III precision approach navigation system performance requirements[J]. Journal of Navigation, 2010, 63( 4): 569- 589.
|
34 |
Felux M. Total system performance of GBAS-based automatic landings[D]. München: Technische Universität München, 2018, 37- 40.
|
35 |
Boeing. Determining the vertical alert limit requirements for a level of GBAS service that is appropriate to support CAT Ⅱ/Ⅲ Operations: D6-83447-4[R]. Chicago: Boeing, 2005.
|
36 |
Radio Technical Commission for Aeronautics (RTCA). Minimum operational performance standards for GPS local area augmentation system airborne equipment: RTCA DO-253C[R]. Washington, D.C.: RTCA, 2008.
|
37 |
Clark B, Decleene B. Alert limits: Do we need them for CAT Ⅲ? Deriving GBAS requirements for consistency with CAT III operations[C]∥ Proceedings of ION GNSS 2006. Manassas: ION, 2006: 3070– 3081.
|
38 |
陈钦明, 宋淑丽, 朱文耀. 亚洲地区ECMWF/NCEP资料计算ZTD的精度分析[J]. 地球物理学报, 2012, 55( 5): 1541- 1548.
|
|
CHEN Q M, SONG S L, ZHU W Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area[J]. Chinese Journal of Geophysics, 2012, 55( 5): 1541- 1548 (in Chinese).
|
39 |
陈权亮, 任景轩, 卞建春, 等. ECMWF和HALOE平流层温度资料对比[J]. 地球物理学报, 2009, 52( 11): 2698- 2703.
|
|
CHEN Q L, REN J X, BIAN J C, et al. Comparison study on ECMWF and HALOE temperature data in the stratosphere[J]. Chinese Journal of Geophysics, 2009, 52( 11): 2698- 2703 (in Chinese).
|
40 |
Chen Q M, Song S L, Heise S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. GPS Solut, 15: 415– 425.
|
41 |
ZHANG Y, WANG Z P. The impact of tropospheric anomalies on sea-based JPALS integrity[J]. Sensors, 2018, 18( 8): 2579.
|
42 |
GREGORIUS T, BLEWITT G. The effect of weather fronts on GPS measurements[J]. GPS World, 1998, 9: 52- 60.
|