[1] LEWIS B L, BECKWITH L R. A unified approach to turbine blade life prediction[C]//Aerospace Congress and Exposition. Warrendale:SAE International, 1982:821439. [2] 高阳, 白广忱. 轮盘低循环疲劳寿命可靠性分析方法[J]. 机械设计与制造, 2009(6):60-62. GAO Y, BAI G C. Reliability analysis method for the low cycle fatigue life of a disk[J]. Machinery Design & Manufacture, 2009(6):60-62(in Chinese). [3] 江龙平, 徐可君, 隋育松. 叶片振动的灰色可靠性研究[J]. 汽轮机技术, 2002, 44(5):285-286, 309. JIANG L P, XU K J, SUI Y S. Gray reliability research on vibration of blades[J]. Turbine Technology, 2002, 44(5):285-286, 309(in Chinese). [4] 王延荣, 宋兆泓, 侯贵仓. 涡轮叶片高温低循环疲劳/蠕变寿命试验评定[J]. 航空动力学报, 2002, 17(4):407-411. WANG Y R, SONG Z H, HOU G C. Experimental evaluation of high temperature low cycle fatigue/creep life of turbine blade[J]. Journal of Aerospace Power, 2002, 17(4):407-411(in Chinese). [5] ZHU S P, HUANG H Z, PENG W W, et al. Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty[J]. Reliability Engineering & System Safety, 2016, 146:1-12. [6] ZHU S P, LIU Q, PENG W W, et al. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks[J]. International Journal of Mechanical Sciences, 2018, 142-143:502-517. [7] ZHU S P, LIU Q, ZHOU J, et al. Fatigue reliability assessment of turbine discs under multi-source uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(6):1291-1305. [8] NIU X P, WANG R Z, LIAO D, et al. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks[J]. International Journal of Fatigue, 2021, 142:105912. [9] 龚勋. 涡轮冷却叶片结构网格参数化方法研究[D]. 南京:南京航空航天大学, 2016. GONG X. Research on parametric block-decomposition methods of turbine cooling blades' mesh-generation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese). [10] 李磊, 杨子龙, 王佩艳. 燃气轮机涡轮冷却叶片设计及优化[M]. 北京:科学出版社, 2018. LI L, YANG Z L, WANG P Y. Cooling blade design and optimization of gas turbine[M]. Beijing:Science Press, 2018(in Chinese). [11] 苏清友. 航空涡喷、涡扇发动机主要零部件定寿指南[M]. 北京:航空工业出版社, 2004. SU Q Y. Life determination guide for main components of areo turbojet and turbofan engines[M]. Beijing:Aviation Industry Press, 2004(in Chinese). [12] 《中国航空材料手册》编委会. 中国航空材料手册(第2卷:变形高温合金、铸造高温合金)[M]. 2版. 北京:中国标准出版社, 2001. Editorial Committee of China Aviation Materials Manual. Handbook of aeronautical materials of China (Volume II:Wrought and cast superalloys)[M]. 2nd edition. Beijing:China Standard Press, 2001(in Chinese). [13] 岳鹏. 发动机涡轮叶片高低周复合疲劳寿命预测与可靠性分析[D]. 成都:电子科技大学, 2017. YUE P. Combined cycle fatigue life prediction and reliability analysis of turbine blades[D]. Chengdu:University of Electronic Science and Technology of China, 2017(in Chinese). [14] MORROW J. Cyclic plastic strain energy and fatigue of metals[M]//Internal friction, damping, and cyclic plasticity. West Conshohocken:ASTM International, 1965:45-87. [15] 殷之平, 谢传. 结构疲劳与断裂[M]. 西安:西北工业大学出版社, 2012. YIN Z P, XIE C. Structural fatigue and fracture M]. Xi'an:Northwestern Polytechnical University Press, 2012(in Chinese). [16] MANSON S S, SUCCOP G. Stress-rupture properties of inconel 700 and correlation on the basis of several time-temperature parameters[C]//Symposium on Metallic Materials for Service at Temperatures Above 1600 F. West Conshohocken:ASTM International, 1956:40-40-7. [17] 傅惠民, 高镇同, 梁美训. P-S-N曲线拟合法[J]. 航空学报, 1988, 9(7):338-341. FU H M, GAO Z T, LIANG M X. A method for fitting P-S-N curve[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(7):338-341(in Chinese). [18] PETERSON R E. Stress concentration factors:Charts and relations useful in making strength calculations for machine parts and structural elements[M]. New York:John Wiley & Sons, 1974. [19] GOODMAN J. Mechanics applied to engineering[M]. London:Longmans, Green and Co., Ltd., 1914. [20] JEAN L. A course on damage mechanics[M]. Berlin:Springer, 1996. [21] MINER M A.Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3):A159-A164. [22] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS:An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2):145-154. [23] YUN W Y, LU Z Z, ZHOU Y C, et al. AK-SYSi:An improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function[J]. Structural and Multidisciplinary Optimization, 2019, 59(1):263-278. |