收稿日期:
2022-11-22
修回日期:
2023-01-30
接受日期:
2023-03-03
出版日期:
2023-09-25
发布日期:
2023-03-03
通讯作者:
薛小锋
E-mail:xuexiaofeng@nwpu.edu.cn
Yunwen FENG1, Xinyi LIN1, Xiaofeng XUE1(), Xiang YANG2, Jiaqi LIU1
Received:
2022-11-22
Revised:
2023-01-30
Accepted:
2023-03-03
Online:
2023-09-25
Published:
2023-03-03
Contact:
Xiaofeng XUE
E-mail:xuexiaofeng@nwpu.edu.cn
摘要:
基于适航条款FAR25.795和咨询通告AC25.795-6,结合灾难性故障状态对飞机和乘客的影响程度,确定最小风险炸弹位置(LRBL)结构的设计要求是结构实现单向爆破功能的概率大于1-10-9,提出了一种高可靠单向爆破的LRBL结构的设计技术。首先根据LRBL结构将爆炸产生的能量沿指定方向释放到客舱外部的防爆原理,设计LRBL结构方案是由端盖、罐体以及剪切销三部分组成的圆筒结构,然后利用LS-DYNA软件对内爆作用下LRBL结构的塑性应变进行研究,分别讨论了不同炸药位置和结构尺寸对LRBL结构各危险部位塑性应变的影响,最后开展了LRBL结构实现单方向爆破功能的可靠性分析,利用拉丁超立方抽样获取输入样本,通过爆炸仿真获得输出样本,采用K-S检验分析其概率分布特征,并基于故障树模型计算可靠度。结果表明:所提出的结构厚度为20 mm、剪切销直径为14 mm的LRBL结构设计方案,其实现单方向爆破功能的概率为1-4.07×10-10,能够满足LRBL结构的设计要求,可为国产飞机LRBL结构的适航验证和适航审定提供技术支撑。
中图分类号:
冯蕴雯, 林心怡, 薛小锋, 杨祥, 刘佳奇. 高可靠单向爆破的民机防爆结构设计[J]. 航空学报, 2023, 44(18): 228297-228297.
Yunwen FENG, Xinyi LIN, Xiaofeng XUE, Xiang YANG, Jiaqi LIU. Design of civil aircraft explosion-proof structure for high reliable one-way blasting[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228297-228297.
表 11
不同方案的各危险部位最大塑性应变
方案编号 | 罐体体壁 | 相对 变化 | 罐体孔边 | 相对 变化 | 罐体凸台 | 相对 变化 | 装填端盖凸台 | 相对 变化 | 装填端盖底部 | 相对变化 | 破坏端盖孔边 | 相对 变化 | 剪切销 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.152 | 0.242 | 0.241 | 0.235 | 0.167 | 0.033 | 0.2 | ||||||
2 | 0.052 | -65.8% | 0.116 | -52.1% | 0.218 | -9.5% | 0.097 | -58.7% | 0.093 | -44.3% | 0.118 | 257.6% | 0.2 |
3 | 0.053 | -65.1% | 0.124 | -48.8% | 0.103 | -57.3% | 0.082 | -65.1% | 0.068 | -59.3% | 0.121 | 266.7% | 0.2 |
4 | 0.056 | -63.2% | 0.052 | -78.5% | 0.080 | -66.8% | 0.080 | -66.0% | 0.062 | -62.9% | 0.113 | 242.4% | 0.2 |
5 | 0.056 | -63.2% | 0.115 | -52.5% | 0.038 | -84.2% | 0.028 | -88.1% | 0.036 | -78.4% | 0.086 | 160.6% | 0.2 |
表 13
可靠性分析输入变量样本
序号 | 载荷 | 材料性能(Ti-6Al-4V) | |
---|---|---|---|
TNT当量/g | 弹性模量/GPa | 屈服强度/GPa | |
1 | 231.734 1 | 93.611 2 | 0.943 9 |
2 | 239.308 0 | 110.388 8 | 0.860 7 |
3 | 207.301 0 | 102.640 9 | 0.956 1 |
4 | 235.317 4 | 100.034 9 | 1.015 3 |
5 | 224.682 6 | 101.359 1 | 0.932 1 |
6 | 215.697 2 | 96.714 2 | 0.986 7 |
7 | 220.692 0 | 98.560 1 | 0.969 7 |
8 | 228.265 9 | 107.285 8 | 0.906 3 |
9 | 252.699 0 | 103.965 1 | 0.919 9 |
10 | 244.302 8 | 105.439 9 | 0.889 3 |
11 | 229.134 6 | 103.625 1 | 0.929 1 |
12 | 242.897 3 | 96.133 2 | 0.909 9 |
13 | 202.952 5 | 104.314 2 | 0.959 3 |
14 | 234.397 2 | 111.995 8 | 0.953 0 |
15 | 225.602 8 | 102.964 5 | 0.883 9 |
16 | 214.125 2 | 106.766 4 | 0.935 1 |
17 | 217.102 7 | 105.048 6 | 0.923 0 |
18 | 227.390 2 | 101.035 5 | 0.973 5 |
19 | 257.047 5 | 101.680 2 | 0.981 9 |
20 | 245.874 8 | 99.685 8 | 0.992 1 |
21 | 210.134 5 | 105.852 6 | 0.894 1 |
22 | 249.865 5 | 97.233 6 | 0.946 9 |
23 | 232.609 8 | 98.147 4 | 0.845 9 |
24 | 223.738 1 | 98.951 4 | 0.870 3 |
25 | 230.865 4 | 92.004 2 | 0.940 9 |
26 | 219.575 3 | 109.341 6 | 1.030 1 |
27 | 221.750 9 | 102.319 8 | 0.902 5 |
28 | 240.424 7 | 100.374 9 | 0.966 1 |
29 | 236.261 9 | 107.866 8 | 0.916 7 |
30 | 238.249 1 | 94.658 4 | 1.005 7 |
表 14
可靠性分析输出变量样本
序号 | 罐体 | 装填端端盖 | 破坏端盖 孔边Y6 | 剪切销Y7 | |||
---|---|---|---|---|---|---|---|
体壁Y1 | 孔边Y2 | 凸台Y3 | 凸台Y4 | 底部Y5 | |||
1 | 0.061 0 | 0.052 5 | 0.075 7 | 0.080 0 | 0.061 8 | 0.125 | 0.2 |
2 | 0.030 9 | 0.060 1 | 0.099 2 | 0.082 5 | 0.067 5 | 0.122 | 0.2 |
3 | 0.034 6 | 0.053 3 | 0.060 4 | 0.063 5 | 0.047 4 | 0.146 | 0.2 |
4 | 0.048 9 | 0.040 4 | 0.073 6 | 0.076 5 | 0.056 4 | 0.106 | 0.2 |
5 | 0.057 8 | 0.062 9 | 0.074 3 | 0.073 3 | 0.057 5 | 0.125 | 0.2 |
6 | 0.035 4 | 0.049 3 | 0.064 9 | 0.069 4 | 0.049 7 | 0.12 | 0.2 |
7 | 0.047 4 | 0.057 9 | 0.071 0 | 0.072 7 | 0.054 7 | 0.124 | 0.2 |
8 | 0.055 1 | 0.053 8 | 0.080 7 | 0.078 1 | 0.062 2 | 0.131 | 0.2 |
9 | 0.040 6 | 0.050 8 | 0.101 0 | 0.087 2 | 0.071 7 | 0.126 | 0.2 |
10 | 0.036 0 | 0.051 9 | 0.094 0 | 0.085 8 | 0.070 6 | 0.131 | 0.2 |
11 | 0.059 7 | 0.051 3 | 0.079 2 | 0.077 0 | 0.061 0 | 0.122 | 0.2 |
12 | 0.030 8 | 0.049 1 | 0.087 3 | 0.084 5 | 0.067 6 | 0.126 | 0.2 |
13 | 0.029 4 | 0.051 7 | 0.058 7 | 0.062 6 | 0.046 9 | 0.137 | 0.2 |
14 | 0.043 0 | 0.050 5 | 0.079 1 | 0.076 3 | 0.060 2 | 0.115 | 0.2 |
15 | 0.061 0 | 0.058 1 | 0.079 1 | 0.075 0 | 0.059 4 | 0.135 | 0.2 |
16 | 0.036 4 | 0.070 3 | 0.068 7 | 0.068 3 | 0.053 0 | 0.127 | 0.2 |
17 | 0.033 5 | 0.057 3 | 0.072 4 | 0.070 9 | 0.055 7 | 0.139 | 0.2 |
18 | 0.054 9 | 0.054 4 | 0.070 6 | 0.072 7 | 0.055 5 | 0.117 | 0.2 |
19 | 0.029 3 | 0.045 0 | 0.093 9 | 0.087 6 | 0.070 2 | 0.119 | 0.2 |
20 | 0.031 5 | 0.043 8 | 0.084 7 | 0.084 9 | 0.065 4 | 0.113 | 0.2 |
21 | 0.033 3 | 0.055 0 | 0.065 5 | 0.065 2 | 0.050 1 | 0.142 | 0.2 |
22 | 0.039 3 | 0.049 2 | 0.094 8 | 0.088 6 | 0.071 7 | 0.123 | 0.2 |
23 | 0.064 2 | 0.064 3 | 0.088 1 | 0.083 8 | 0.068 1 | 0.143 | 0.2 |
24 | 0.053 8 | 0.061 6 | 0.079 8 | 0.075 8 | 0.060 7 | 0.148 | 0.2 |
25 | 0.059 4 | 0.053 9 | 0.077 4 | 0.080 9 | 0.062 7 | 0.126 | 0.2 |
26 | 0.041 7 | 0.055 1 | 0.064 2 | 0.066 0 | 0.048 8 | 0.107 | 0.2 |
27 | 0.050 8 | 0.067 0 | 0.076 0 | 0.073 7 | 0.058 8 | 0.135 | 0.2 |
28 | 0.028 2 | 0.045 9 | 0.081 8 | 0.081 2 | 0.063 0 | 0.118 | 0.2 |
29 | 0.054 4 | 0.051 1 | 0.081 4 | 0.078 8 | 0.062 7 | 0.129 | 0.2 |
30 | 0.025 8 | 0.047 6 | 0.077 6 | 0.082 1 | 0.062 4 | 0.116 | 0.2 |
1 | FAA. FAR Part 25 amendment No: 25-127: Security considerations requirements for transport gategory airplanes [S]. Washing,D. C. : FAA, 2008. |
2 | FAA. AC25. 795-6: Least risk bomb location [S]. Washington, D. C. : FAA, 2008. |
3 | 陆鹏, 郭忠宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究[J]. 民用飞机设计与研究, 2016(4): 6-12. |
LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil aircraft least risk bomb location design[J]. Civil Aircraft Design & Research, 2016(4): 6-12 (in Chinese). | |
4 | 冯振宇, 周书婷, 李恒晖, 等. 运输类飞机“最小风险炸弹位置”的研究进展[J]. 航空工程进展, 2018, 9(3): 316-325. |
FENG Z Y, ZHOU S T, LI H H, et al. Research progress on the “least risk bomb location” (LRBL) for transport aircraft[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 316-325 (in Chinese). | |
5 | 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报, 2021, 42(2): 224252. |
LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252 (in Chinese). | |
6 | 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应[J]. 航空学报, 2022, 43(6): 525513. |
FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 523513 (in Chinese). | |
7 | BURNS G, BAYANDOR J. Analysis and modeling of explosive containment box for aircraft In-flight protection[C]∥ 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virginia: AIAA, 2011: 802. |
8 | COSTAIN A, BAYANDOR J. Analysis of a novel mobile aircraft explosive containment unit[C]∥ 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014: 0691. |
9 | 苏培刚, 陈剑平, 殷国祥, 等. 航空餐车内置式防爆罐抗爆性能的数值模拟[J]. 消防科学与技术, 2020, 39(4): 460-464. |
SU P G, CHEN J P, YIN G X, et al. Numerical simulation of blast resistant characteristics for the anti-explosion container built in airline cart[J]. Fire Science and Technology, 2020, 39(4): 460-464 (in Chinese). | |
10 | YAO S J, ZHANG D, LU F. Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading[J].Archive of Applied Mechanics, 2015, 85(6):735-744. |
11 | CHOI Y, LEE J. Influence of explosive weight and steel thickness on behavior of steel plates[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(3): 471-477. |
12 | GHARABABAEI H, DARVIZEH A, DARVIZEH M. Analytical and experimental studies for deformation of circular plates subjected to blast loading[J]. Journal of Mechanical Science and Technology, 2010, 24(9): 1855-1864. |
13 | GERETTO C, CHUNG KIM YUEN S, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J]. International Journal of Impact Engineering, 2015, 79: 32-44. |
14 | SPRANGHERS K, VASILAKOS I, LECOMPTE D, et al. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions[J]. International Journal of Impact Engineering, 2013, 54: 83-95. |
15 | 施兴华, 张婧, 王善. 水下接触爆炸载荷作用下多层板壳破坏概率分析[J]. 弹道学报, 2009, 21(1): 1-4, 18. |
SHI X H, ZHANG J, WANG S. Destroy probability of multilayer plate-shell structure subjected to underwater contact explosions[J]. Journal of Ballistics, 2009, 21(1): 1-4, 18 (in Chinese). | |
16 | IMAI K, FRANGOPOL D. Geometrically nonlinear finite element reliability analysis of structural systems. I: theory[J]. Computers & Structures, 2000, 77(6): 677-691. |
17 | 李万, 张志华, 李华, 等. 水下爆炸载荷作用下水下目标结构的可靠性研究[J]. 高压物理学报, 2014, 28(3): 324-330. |
LI W, ZHANG Z H, LI H, et al. Reliability on underwater target structure subjected to underwater explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 324-330 (in Chinese). | |
18 | 陈卫东, 陈浩, 于艳春. 爆炸载荷作用下弹性结构动力可靠性研究[J]. 振动与冲击, 2012, 31(22): 118-122. |
CHEN W D, CHEN H, YU Y C. Dynamical reliability of an elastic structure subjected to explosion[J]. Journal of Vibration and Shock, 2012, 31(22): 118-122 (in Chinese). | |
19 | 陈卫东, 陈浩, 张帆. 水下爆炸载荷作用下圆筒的可靠性研究[J]. 哈尔滨工业大学学报, 2011, 43(S1): 192-197. |
CHEN W D, CHEN H, ZHANG F. Reliability on cylinder structure subjected to underwater explosion[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 192-197 (in Chinese). | |
20 | LOW H Y, HAO H. Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading[J]. Engineering Structures, 2002, 24(2): 189-198. |
21 | EAMON C D. Reliability of concrete masonry unit walls subjected to explosive loads[J]. Journal of Structural Engineering, 2007, 133(7): 935-944. |
22 | LOW H Y, HAO H. Reliability analysis of reinforced concrete slabs under explosive loading[J]. Structural Safety, 2001, 23(2): 157-178. |
23 | 李琳娜, 钟东望, 黄小武, 等. 基于动态预测的深水爆炸试验容器可靠性分析[J]. 爆炸与冲击, 2021, 41(1): 114-121. |
LI L N, ZHONG D W, HUANG X W, et al. Reliability analysis of deepwater explosion test vessel based on dynamic prediction[J]. Explosion and Shock Waves, 2021, 41(1): 114-121 (in Chinese). | |
24 | BAI L, KALAJ D. Approximation of Kolmogorov-Smirnov test statistic[J]. Stochastics, 2021, 93(7): 993-1027. |
25 | MORA-LÓPEZ L, MORA J. An adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov-Smirnov two-sample test[J]. Expert Systems with Applications, 2015, 42(8): 4016-4021. |
26 | 张雄, 陆明万, 王建军. 任意拉格朗日-欧拉描述法研究进展[J]. 计算力学学报, 1997, 14(1): 91-102. |
ZHANG X, LU M W, WANG J. Research progress in arbitrary Lagrangian Eulerian method[J]. Chinese Journal of Computational Mechanics, 1997, 14(1): 91-102 (in Chinese). | |
27 | LANGDON G S, OZINSKY A, CHUNG KIM YUEN S. The response of partially confined right circular stainless steel cylinders to internal air-blast loading[J]. International Journal of Impact Engineering, 2014, 73: 1-14. |
28 | 何涛. 流固耦合数值方法研究概述与浅析[J]. 振动与冲击, 2018, 37(4)184-190. |
HE T. Numerical solution techniques for fluid-structure interaction simulations: a brief review and discussion[J]. Journal of Vibration and Shock, 2018, 37(4)184-190 (in Chinese). | |
29 | 师义民, 徐伟, 秦超英. 数理统计[M]. 4版. 北京: 科学出版社, 2015: 118-125. |
SHI Y M, XU W, QIN C Y. Mathematical statistics[M]. 4th ed. Beijing: Science Press, 2015: 118-125 (in Chinese). | |
30 | 刘文珽. 结构可靠性设计手册[M]. 北京: 国防工业出版社, 2008: 475-478. |
LIU W T. Handbook of structural reliability design[M]. Beijing: National Defense Industry Press, 2008: 475-478 (in Chinese). | |
31 | 张骏华. 导弹与运载火箭之结构强度可靠性设计指南(金属结构部分)[M]. 北京: 宇航出版社, 1994: 3-4,98-101. |
ZHANG J H. Structural Strength and Reliability Design Guidelines for Missiles and Launch Vehicles (Metal Structure Section)[M]. Beijing: China Astronautic Publishing House, 1994: 3-4,98-101 (in Chinese). | |
32 | SEIDT J D, MICHAEL PEREIRA J, GILAT A, et al. Ballistic impact of anisotropic 2024 aluminum sheet and plate[J]. International Journal of Impact Engineering, 2013, 62: 27-34. |
33 | 辛春亮, 朱星宇, 薛再清. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022: 44,194-199. |
XIN C L, ZHU X Y, XUE Z Q. Handbook of common material parameters for finite element analysis[M]. 2nd ed. Beijing: China Machine Press, 2022: 44,194-199 (in Chinese). | |
34 | 周书婷. 爆炸冲击载荷下铝合金机身壁板结构响应及破坏模式研究[D]. 天津: 中国民航大学, 2008: 19-28. |
ZHOU S T. Study on structural response and failure mode of aluminum alloy fuselage panel under explosive impact load[D]. Tianjin: Civil Aviation University of China,2008 : 19-28. (in Chinese) | |
35 | 郑金国. 内爆载荷下铝合金机身结构动态响应数值仿真研究[D]. 天津: 中国民航大学,2017 : 14-16. |
ZHENG J G. Numerical simulation study on dynamic response of aluminum alloy fuselage structure under implosion load[D]. Tianjin: Civil Aviation University of China,2017 : 14-16. (in Chinese) | |
36 | 刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力[J]. 爆炸与冲击, 2018, 38(5): 1045-1050. |
LIU W X, ZHANG D Z, ZHONG F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel[J]. Explosion and Shock Waves, 2018, 38(5): 1045-1050 (in Chinese). | |
37 | 秦福光. 民机结构分析和设计-第1册-民机材料和结构性能数据手册[M]. 北京: 北京航空航天大学出版社, 2017: 134-155. |
QIN F G. Structural analysis and design of civil aircraft-volume 1-civil aircraft materials and structural performance data manual[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2017: 134-155 (in Chinese). | |
38 | 方开泰, 王元. 数论方法在统计中的应用[M]. 北京: 科学出版社, 1996: 222-224. |
FANG K T, WANG Y. Application of number theory method in statistics[M]. Beijing: Science Press, 1996: 222-224 (in Chinese). |
[1] | 龚煜廉, 张建国, 吴志刚, 褚光远, 范晓铎, 黄赢. 主动学习基自适应PC⁃Kriging模型的复合材料结构可靠度算法[J]. 航空学报, 2024, 45(8): 228982-228982. |
[2] | 张帆, 程伯晗, 王鹏, 董磊. 二元共载系统退化相关的两阶段退化模型及可靠性分析[J]. 航空学报, 2024, 45(7): 229046-229046. |
[3] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[4] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[5] | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335-127335. |
[6] | 张帆, 孙紫荆, 肖国松, 刘嘉琛, 王鹏. 基于直觉模糊贝叶斯网络的HUD系统多阶段任务可靠性分析[J]. 航空学报, 2023, 44(4): 226853-226853. |
[7] | 杨乐昌, 汪晨星. 基于多源异构信息的航空发动机转子参数校准与可靠性分析[J]. 航空学报, 2023, 44(23): 228575-228575. |
[8] | 张絮涵, 曹祎, 孙静楠, 潘舜智. 民机座舱空气环境参数权重分析方法对比研究[J]. 航空学报, 2023, 44(20): 228480-228480. |
[9] | 姜峰, 李华聪, 符江锋, 洪林雄. 基于RBF和主动学习的非概率可靠度求解方法[J]. 航空学报, 2023, 44(2): 226667-226667. |
[10] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[11] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[12] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[13] | 郭庆, 关德明. 民机维修任务分析的人因可靠性预测模型[J]. 航空学报, 2023, 44(16): 228051-228051. |
[14] | 杨文国, 王睿, 尹永涛, 陈万华. 5.5 m×4 m航空声学风洞结构设计与研究[J]. 航空学报, 2023, 44(12): 127711-127711. |
[15] | 刘小川, 张欣玥, 惠旭龙, 闫亚斌, 麻军太. 结构修理对民机机身耐撞性的影响[J]. 航空学报, 2023, 44(10): 227517-227517. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学