[1] INGOLDBY R N, MICHEL F C, FLAHERTY T M, et al. Entry data analysis for Viking Landers 1 and 2 final report:NASA CR-159388[R]. Washington, D.C.:NASA, 1976.
[2] RICHARD P K, MARK D G, LYNN E C, et al. Entry, descent, and landing communications for the 2007 phoenix Mars Lander[J]. Journal of Spacecraft and Rockets, 2008, 45(3):543-547.
[3] KARL T E, BRIAN R H, CHRISTOPHER O J. Mars Science Laboratory heatshield aerothermodynamics:Resign and reconstruction:AIAA-2013-2781[R]. Reston:AIAA, 2013.
[4] 欧阳自远, 肖福根. 火星探测的主要科学问题[J]. 航天器环境工程, 2011, 28(3):205-217. OUYANG Z Y, XIAO F G. Major scientific issues involved in Mars exploration[J]. Spacecraft Environment Engineering, 2011, 28(3):205-217 (in Chinese).
[5] BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[J]. Journal of Spacraft Rockets, 2007, 44(2):310-323.
[6] WRIGHT M J,TANG C Y, EDQUIST K T, et al. A review of aerothermal modeling for Mars entry missions:AIAA-2010-0443[R]. Reston:AIAA, 2010.
[7] BIRD G A. Molecular gas dynamics and direct simulation of gas flow Clarendon[M]. Oxford:Oxford Universtiy Press, 1994.
[8] BORGANOFF C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(18):405-420.
[9] 黄飞, 陈智, 程晓丽, 等. 一种基于自适应碰撞距离的DSMC虚拟子网格方法[J]. 空气动力学学报, 2014, 32(4):506-510. HUANG F, CHEN Z, CHENG X L, et al. A virtual sub-cells technique with transient adaptive collision distance for the DSMC method[J]. Acta Aerodynamics Sinica, 2014, 32(4):506-510 (in Chinese).
[10] 黄飞, 吕俊明, 程晓丽, 等. 火星稀薄大气模型不确定性对进入器气动特性的影响[J]. 宇航学报, 2015, 36(10):800-817. HUANG F, LV J M, CHENG X L, et al. Impact of Martian rarefied atmosphere parameters on entry vehicle aerodynamics under hypersonic conditions[J]. Journal of Astronautics, 2015, 36(10):800-817 (in Chinese).
[11] SCHOENENBERGER M, DYAKONOV A, BUNING P, et al. Aerodynamic challenges for the Mars Science Laboratory entry, descent and landing:AIAA-2009-3914[R]. Reston:AIAA, 2009. |