[1] INSPERGER T, STÉPÁN G. Semi-discretization method for delayed systems[J]. International Journal for Numerical Methods in Engineering, 2002, 55(5):503-518.
[2] INSPERGER T. Full-discretization and semi-discretization for milling stability prediction:Some comments[J]. International Journal of Machine Tools and Manufacture, 2010, 50(7):658-662.
[3] DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5):502-509.
[4] BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling-Part I:general formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(1):22-30.
[5] ALTINTAS Y. Analytical prediction of three dimensional chatter stability in milling[J]. JSME International Journal Series C:Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(3):717-723.
[6] MERDOL S D, ALTINTAS Y. Multi frequency solution of chatter stability for low immersion milling[J]. Transactions of the ASME Journal of Manufacturing Science and Engineering, 2004, 126(3):459-466.
[7] RATCHEV S, NIKOV S, MOUALEK I. Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA[J]. Advances in Engineering Software, 2004, 35(8-9):481-491.
[8] 万敏, 张卫红, 谭刚. 薄壁件周铣过程中材料去除效应的快速仿真[J]. 航空学报, 2007, 28(5):1247-1251. WAN M, ZHANG W H, TAN G. Efficient simulation model of material removal in peripheral milling of thin-walled workpiece[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1247-1251(in Chinese).
[9] SEGUY S, CAMPA F J, LÓPEZ DE LACALLE L N, et al. Toolpath dependent stability lobes for the milling of thin-walled parts[J]. International Journal of Machining and Machinability of Materials, 2008, 4(4):377-392.
[10] ZHANG X J, XIONG C H, DING Y, et al. Stability analysis in milling of thin-walled workpieces with emphasis on the structural effect[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(4):589-608.
[11] MESHREKI M, ATTIA H, KÖVECSES J. Development of a new model for the varying dynamics of flexible pocket-structures during machining[J]. Transactions of the ASME Journal of Manufacturing Science and Engineering, 2011, 133(4):041002-1-041002-14.
[12] LIU Y L, WU B H, LUO M, et al. Modeling and cutting path optimization of shallow shell considering its varying dynamics during machining[J]. Procedia CIRP, 2015, 31:521-526.
[13] ZHANG X M, ZHU L M, DING Y. Matrix perturbation method for predicting dynamic modal shapes of the workpiece in high-speed machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(1):177-183.
[14] ALAN S, BUDAK E, ÖZGVVEN H N. Analytical prediction of part dynamics for machining stability analysis[J]. International Journal of Automation Technology, 2010, 4(3):259-267.
[15] BUDAK E, TUNC L T, ALAN S, et al. Prediction of workpiece dynamics and its effects on chatter stability in milling[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1):339-342.
[16] THÉVENOT V, ARNAUD L, DESSEIN G, et al. Influence of material removal on the dynamic behavior of thin-walled structures in peripheral milling[J]. Machining Science and Technology, 2006, 10(3):275-287.
[17] TANG A J, LIU Z Q. Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43(1-2):33-39.
[18] SONG Q H, AI X, TANG W X. Prediction of simultaneous dynamic stability limit of time-variable parameters system in thin-walled workpiece high-speed milling processes[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(9-12):883-889.
[19] LUO M, ZHANG D H, WU B H, et al. Modeling and analysis effects of material removal on machining dynamics in milling of thin-walled workpiece[C]//Proceedings of the 13th CIRP Conference on Modelling of Machining Operations. Sintra:CIRP, 2011:671-678.
[20] LUO M, ZHANG D H, WU B H, et al. Material removal process optimization for milling of flexible workpiece considering machining stability[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(8):1263-1272.
[21] KOIKE Y, MATSUBARA A, NISHIWAKI S, et al. Cutting path design to minimize workpiece displacement at cutting point:Milling of thin-walled parts[J]. International Journal of Automation Technology, 2012, 6(5):638-647.
[22] KOLLURU K, AXINTE D. Coupled interaction of dynamic responses of tool and workpiece in thin wall milling[J]. Journal of Materials Processing Technology, 2013, 213(9):1565-1574.
[23] CHEN D, LIN B, HAN Z L, et al. Study on the optimization of cutting parameters in turning thin-walled circular cylindrical shell based upon cutting stability[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1-4):891-899.
[24] 王聪梅, 司克鑫, 蒋洪权, 等. 机匣制造技术[M]. 北京:科学出版社, 2002:2-28, 44-61. WANG C M, SI K X, JIANG H Q, et al. Casings manufacturing technology[M]. Beijing:Science Press, 2002:2-28, 44-61(in Chinese).
[25] 李国明. 航空发动机机匣数控加工工艺研究[D]. 大连:大连理工大学, 2012:28-52. LI G M. Study on NC machining technology of aero engine casing[D]. Dalian:Dalian University of Technology, 2012:28-52(in Chinese).
[26] OZTURK E, BUDAK E. Dynamics and stability of five-axis ball-end milling[J]. Transactions of the ASME Journal of Manufacturing Science and Engineering, 2010, 132(2):021003-1-021003-13. |