航空学报 > 2016, Vol. 37 Issue (2): 568-578   doi: 10.7527/S1000-6893.2015.0106

悬停状态共轴刚性双旋翼非定常流动干扰机理

朱正, 招启军, 李鹏   

  1. 南京航空航天大学直升机旋翼动力学国家级重点实验室, 南京 210016
  • 收稿日期:2015-01-04 修回日期:2015-04-15 出版日期:2016-02-15 发布日期:2015-04-21
  • 通讯作者: 招启军,男,博士,教授,博士生导师。主要研究方向:直升机空气动力学、计算流体力学、气动外形设计、气动噪声模拟与控制、主动流动控制及总体设计。Tel:025-84893753,E-mail:zhaoqijun@nuaa.edu.cn E-mail:zhaoqijun@nuaa.edu.cn
  • 作者简介:朱正,男,博士研究生。主要研究方向:直升机旋翼气动噪声、计算流体力学、桨叶外形优化及共轴高速直升机气动布局优化设计。Tel:025-84893753,E-mail:zhuzheng@nuaa.edu.cn;李鹏,男,博士研究生。主要研究方向:旋翼计算流体力学、并行计算流体力学及倾转旋翼机气动布局设计。Tel:025-84893753,E-mail:lp1987@nuaa.edu.cn
  • 基金资助:

    国家自然科学基金(11272150);江苏高校优势学科建设工程资助项目

Unsteady flow interaction mechanism of coaxial rigid rotors in hover

ZHU Zheng, ZHAO Qijun, LI Peng   

  1. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2015-01-04 Revised:2015-04-15 Online:2016-02-15 Published:2015-04-21
  • Supported by:

    National Natural Science Foundation of China(11272150);Project Funded by the Priority Academic Development of Jiangsu Higher Education Institutions

摘要:

基于运动嵌套网格方法,建立了一套适合于悬停状态下共轴刚性双旋翼非定常干扰流场分析的计算流体力学(CFD)方法。首先,基于高效的运动嵌套网格技术,采用积分形式的可压雷诺平均Navier-Stokes(RANS)方程作为双旋翼非定常流场求解控制方程,湍流模型选用Baldwin-Lomax模型,时间推进采用双时间方法。在CFD方法的验证基础之上,对干扰过程中的桨尖涡涡核位置及强度演变规律进行了细致分析,揭示了共轴双旋翼非定常干扰流场中上、下旋翼桨尖涡与双旋翼桨叶之间的贴近干扰、碰撞现象,以及上、下旋翼桨尖涡之间的相互干扰机理。然后,进一步研究了不同总距角下的共轴旋翼系统中上、下旋翼的非定常气动特性以及影响规律。计算结果表明:上旋翼桨叶的桨尖涡会直接与下旋翼桨叶发生碰撞,导致下旋翼桨叶拉力损失;上旋翼桨叶的桨尖涡和下旋翼桨叶的桨尖涡相互干扰,改变了桨尖涡的强度和轨迹;上、下旋翼桨叶相互靠近时,上、下旋翼桨叶的拉力均会上升,之后相互远离时上、下旋翼桨叶拉力均会先下降再上升。

关键词: 共轴刚性旋翼, 非定常流场, 干扰机理, 桨尖涡, 计算流体力学, 悬停状态, 运动嵌套网格

Abstract:

A computational fluid dynamics(CFD) method based on moving-embedded grid technique is established to simulate the unsteady flow field of the coaxial rigid rotor in hover. In this solver, based on the highly-efficient moving-embedded grid technology, the simulation method is developed by solving the compressible Reynolds-averaged Navier-Stokes(RANS) equations with Baldwin-Lomax turbulence model and a dual-time method. Based upon the validation of the present CFD method, during the process of blade-vortex interaction in hover, close vortex-surface interactions and impingement phenomenon have been observed; at the same time, the interaction process among the vortexes shed from the upper blades and lower blades has been captured obviously, as a result, the evolution laws of position and strength of blade-tip vortex shed from different blades are obtained in detail. Furthermore, the periodic unsteady characteristics and variation trend of the aerodynamic forces of the upper rotor and lower rotor have been analyzed. The simulation results demonstrate that the upper blade vortices can impinge upon the lower blade, which causes the thrust loss of lower blade; the strength and positions of the vortexes shed from upper blades and lower blades could change due to the interaction; the forces on both the upper and lower rotors increase as the blades approach, then decrease and increase again as they move away.

Key words: coaxial rigid rotor, unsteady flow field, interaction mechanism, blade-tip vortex, computational fluid dynamics, hovering condition, moving-embedded grid

中图分类号: