[1] Shyy W. Aerodynamics of low Reynolds number flyers[M]. Cambridge, UK:Cambridge University Press, 2007:1-47.
[2] Shyy W, Aono H, Chimakurthi S, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7):284-327.
[3] Ifju P G, Jenkins D A, Ettinger S, et al. Flexible-wing-based micro air vehicles, AIAA-2002-0705[R]. Reston:AIAA, 2002.
[4] Lian Y, Shyy W, Viieru D, et al. Membrane wing aerodynamics for micro air vehicles[J]. Progress in Aerospace Sciences, 2003, 39(6-7):425-465.
[5] O'Meara M, Mueller T. Laminar separation bubble characteristics on an airfoil at low Reynolds numbers[J]. AIAA Journal, 1987, 25(8):1033-1041.
[6] Shyy W, Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro air vehicles[J]. Progress in Aerospace Sciences, 1999, 35(5):455-505.
[7] Sinha S K, Ravande S V. Drag reduction of natural laminar flow airfoils with a flexible surface deturbulator, AIAA-2006-3030[R]. Reston:AIAA, 2006.
[8] Zhan P G, Cheng Y H, Zhao X. Active flow control technique[J]. Aeronautical Science and Technology, 2010(5):2-6(in Chinese).战培国,程娅红,赵昕.主动流动控制技术研究[J].航空科学技术, 2010(5):2-6.
[9] Song A, Breuer K. Dynamics of a compliant membrane as related to mammalian flight, AIAA-2007-0665[R]. Reston:AIAA, 2007.
[10] Taylor G, Kroker A, Gursul I. Passive flow control over flexible non-slender delta wings[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:14389-14405.
[11] Zhang M, Zhou Y, Cheng L. Control of poststall airfoil aerodynamics based on surface perturbation[J]. AIAA Journal, 2008, 46(10):2510-2519.
[12] Kang W, Zhang J Z. Numerical analysis of lift enhancement and drag reduction by self-induced vibration of localized elastic airfoil[J]. Journal of Xi'an Jiaotong University, 2011, 45(5):94-101(in Chinese).康伟,张家忠.翼型局部弹性自振动动的增升减阻效应研究[J].西安交通大学学报, 2011, 45(5):94-101.
[13] Kang W, Zhang J Z, Feng P H. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers[J]. Communications in Computational Physics, 2012, 11(4):1300-1310.
[14] Kang W, Zhang J Z, Lei P F, et al. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number[J]. Journal of Fluids and Structures, 2014, 46:42-58.
[15] Kang W, Zhang J Z, Ren S, et al. Nonlinear Galerkin method for low-dimensional modeling of fluid dynamic system using POD modes[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1):943-952.
[16] Lei P F, Zhang J Z, Chen J H. Unsteady separation of flow around airfoil with local elastic structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):13-22(in Chinese).雷鹏飞,张家忠,陈嘉辉.局部弹性翼型非定常分离的动力学特性[J].力学学报, 2012, 44(1):13-22.
[17] Zienkiewicz O C, Codina R. A general algorithm for compressible and incompressible-flow 1. The split, characteristic-based scheme[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9):869-885.
[18] Zienkiewicz O C, Morgan K, Sai B V K S, et al. A general algorithm for compressible and incompressible-flow 2. Tests on the explicit form[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9):887-913.
[19] Zienkiewicz O C, Nithiarasu P, Codina R, et al. The characteristic-based-split procedure:an efficient and accurate algorithm for fluid problems[J]. International Journal for Numerical Methods in Fluids, 1999, 31(1):359-392.
[20] Batina J T. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J]. AIAA Journal, 1991, 29(3):327-333.
[21] Blom F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.
[22] Bathe K J, Zhang H. A mesh adaptivity procedure for CFD and fluid-structure interactions[J]. Computers & Structures, 2009, 87(11-12):604-617. |