[1] Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.
[2] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[3] He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade, ASME Paper, 1993-GT-92[R]. New York: ASME, 1993.
[4] Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.
[5] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[6] Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347[R]. Reston: AIAA, 2003.
[7] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.
[8] Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079[R]. Reston: AIAA, 2002.
[9] Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.
[10] Gottfried D A. Simulation of fluid-structure interaction in turbomachinery[D]. West Lafayette: Purdue University, 2000.
[11] Xie H. 3-D nonlinear dynamic fluid-structure coupling numerical method and its application research[D]. Xi'an: Xi'an Jiaotong University, 2003 (in Chinese). 谢浩. 三维非线性动态流体-结构耦合数值方法及其应用研究[D]. 西安: 西安交通大学, 2003.
[12] Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction(FSI)/aeroelasticity problems, AIAA-2010-1464[R]. Reston: AIAA, 2010.
[13] Hu P G, Xue L P, Kamakoti R, et al. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P Toolset, AIAA-2010-8224[R]. Reston: AIAA, 2010.
[14] Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[15] Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. Journal of Propulsion and Power, 2009, 25(2): 312-321.
[16] Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20(3): 229-237.
[17] Hu G T, Du L, Sun X F. An immersed boundary method for simulating oscillating rotor baldes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2112-2125 (in Chinese). 胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的振荡转子叶片数值模拟[J]. 航空学报, 2014, 35(8): 2112-2125.
[18] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.
[19] Lam C K, Bremborst K A. Modified form of the k-εmodel for predicting wall turbulence[J]. Journal of Fluids Engineering, 1981, 103(3): 456-460.
[20] Wilcox D C. Comparison of two-equation turbulence models for boundary layers with pressure gradient[J]. AIAA Journal, 1993, 31(8): 1414-1421.
[21] Chen M Z. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2002 (in Chinese). 陈懋章. 粘性流体动力学基础[M]. 北京: 高等教育出版社, 2002. |