[1] United States Department of Defense. MIL-STD-3033 Particle/sand erosion testing of rotor blade protective materials[S]. Washington, D.C.: United States Department of Defense, 2010.
[2] Henderson R E, Hennecke D K. Erosion corrosion and foreign object damage effects in gas turbines, ADA289820[R]. Rotterdam: ADA, 1998.
[3] Pfledderer L, Pepi M. Sand erosion test method for DOD unique environments[C]//Tri-Service Corrosion Conference. Aberdeen: Army Research Laboratory, 2008: 1-24.
[4] Pepi M, Squillacioti R, Pfledderer L, et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108.
[5] Chen K Y, Bielawski M. Ab initio study on fracture toughness of Ti0.75X0.25C ceramics[J]. Journal of Material Science, 2007, 42(23): 9713-9716.
[6] Ashrafrizadeh H, Ashrafrizadeh F. A numerical 3D simulation for prediction of wear caused by solid particle impact[J]. Wear, 2012, 276-277: 75-84.
[7] Lu Y L, Pan J L, Zhang S Q, et al. Influence of highland environmental factors on paint weathering[J]. Equipment Environmental Engineering, 2011, 8(2): 37-41 (in Chinese). 卢言利, 潘家亮, 张拴勤, 等. 高原环境因素对涂层自然老化性能的影响[J]. 装备环境工程, 2011, 8(2): 37-41.
[8] Zhang Y, Li Y, Xi Y S, et al. Development of corrosion preventive coating for marine atmosphere[J]. Equipment Environmental Engineering, 2012, 9(4): 74-78 (in Chinese). 张燕, 李颖, 奚愚生, 等. 海洋大气环境下高耐候性涂层体系的研究[J]. 装备环境工程, 2012, 9(4): 74-78.
[9] Yang X H, He Q, Mamtimin A, et al. A field experiment on dust emission by wind erosion in the Taklimakan desert[J]. Acta Meteorologica Sinica, 2012, 26(2): 241-249.
[10] Wang X M, Zhang C X, Wang H T, et al. The significance of Gobi desert surfaces for dust emissions in China: an experimental study[J]. Environmental Earth Sciences, 2011, 64(4): 1039-1050.
[11] Yang X H, He Q, Mamtimin A, et al. Near-surface sand-dust horizontal flux in Taizhong-the hinterland of the Taklimakan desert[J]. Journal of Arid Land, 2013, 5(2): 199-206.
[12] Liu D X, Xi Y T. Research on solid particle erosion wear resistant of ion assisted deposited ZrN algorithm coating[J]. Journal of Aeronautical Materials, 2010, 30(4): 31-37 (in Chinese). 刘道新, 奚运涛. 离子辅助电弧沉积ZrN梯度涂层抗固体粒子冲蚀行为研究[J]. 航空材料学报, 2010, 30(4): 31-37.
[13] Zhang S, Gong L H. Research on cutting brittle materials by pre-mixed abrasive water jet[J]. Lubrication Engineering, 2011, 36(3): 97-104 (in Chinese). 张沙, 龚烈航. 前混合磨料水射流切割脆性材料研究[J]. 润滑与密封, 2011, 36(3): 97-104.
[14] Alessio G D, Nagy D. Performance of erosion resistant coatings for compressor airfoils[J]. Journal of the Canadian Ceramic Society, 1994, 63(1): 59-63.
[15] Yamazaki Y, Arai M, Miyashita Y, et al. Determination of interfacial fracture toughness of thermal spray coatings by indentation[J]. Journal of Thermal Spray Technology, 2013, 22(8): 1358-1365.
[16] Deng H X, Shi H J, Yu H C, et al. Determination of mixed-mode interfacial fracture toughness for thermal barrier coatings[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 618-624.
[17] Pang X L, Ma H J, Gao K W, et al. Fracture toughness and adhesion of transparent Al:ZnO films deposited on glass substrates[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3161-3167.
[18] Krella A, Czyzniewski A. Influence of the substrate hardness on the cavitation[J]. Wear, 2007, 263(1-6): 395-401.
[19] Bose K, Wood R J K. High velocity solid particle erosion behavior of CVD boron carbide on tungsten carbide[J]. Wear, 2005, 258(1-4): 366-376.
[20] Yang Q, Seo D Y. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J]. Surface and Coatings Technology, 2004, 188-189: 168-173.
[21] Parnaik A, Satapathy A. Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review[J]. Wear, 2010, 268(1-2): 249-263.
[22] Hassani S, Klemberg-Sapieha J E. Mechanical tribological and erosion behavior of super-elastic hard Ti-Si-C coatings prepared by PECVD[J]. Surface and Coatings Technology, 2010, 205(5): 1426-1430.
[23] Amirthan G, Udayakumar A. Solid particle erosion studies on biomorphic Si/SiC ceramic composites[J]. Wear, 2010, 268(1-2): 145-152.
[24] Suh M, Hinoki T, Kohyama A. Erosive wear mechanism of new SiC/SiC composites by solid particles[J]. Tribology Letters, 2011, 41(3): 503-513.
[25] Feuerstein A, Kleyman A. Ti-N multilayer systems for compressor airfoil sand erosion protection[J]. Surface and Coatings Technology, 2009, 204(6-7): 1092-1096.
[26] Laguna-Camacho J R, Cruz-Mendoza L A, Anzeimetti-Zaragoza J C, et al. Solid particle erosion on coatings employed to protect die casting molds[J]. Progress in Organic Coatings, 2012, 74(4): 750-757.
[27] Reedy M W, Eden T J, Potter J K, et al. Erosion performance and characterization of nanolayer (Ti,Cr)N hard coatings for gas turbine engine compressor blade applications[J]. Surface and Coatings Technology, 2011, 206(2-3): 464 -472.
[28] Borawski B, Singh J, Todd J A, et al. Multi-layer coating design architecture for optimum particulate erosion resistance[J]. Wear, 2011, 271(11-12): 2782-2792.
[29] Bousser E, Martinu L, Klemberg-Sapieha J E. Effect of erodent properties on the solid particle erosion mechanisms of brittle materials[J]. Journal of Material Science, 2013, 48(16): 5543-5558.
[30] Zhuravleva P L, Treninkov I A. Investigation into the structure of TiN single layer and TiN/ZrN multilayer coatings[J]. Nanotechnologies, 2010, 5(9-10): 669-675.
[31] Trapezon A G, Lyashenko B A. Fatigue strength of metals with hardening coatings[J]. Strength of Materials, 2013, 45(3): 284-294.
[32] Kleis I, Kulu P. Solid particle erosion occurrence, prediction and control[M]. London: Springer, 2007: 55-89.
[33] Bromark M, Larsson M, Hevenqvist P, et al. Wear of PVD Ti/TiN multi-layer coatings[J]. Surface and Coatings Technology, 1997, 90(3): 217-223.
[34] Dobrzanski L A, Lukaszkowicz K. Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J]. Journal of Materials Processing Technology, 2004, 157-158: 317-323.
[35] Leyland A, Matthews A. Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance[J]. Surface and Coatings Technology, 1994, 70(1): 19-25.
[36] Borawski B, Todd J A. The influence of ductile interlayer material on the particle erosion resistance of multilayered TiN based coatings[J]. Wear, 2011, 271(11-12): 2890-2898.
[37] Brian B, Jogender S, Judith A T, et al. Multi-layer coating design architecture for optimum particulate erosion resistance[J]. Wear, 2011, 271(11-12): 2782-2792.
[38] Yang Q, Bielawski M, McKellar R C. Microstructures, mechanical properties, and erosion resistance of unbalanced magnetron sputtering deposited TiN/VN nano-structured coatings[J]. Metallography, Mircrostructure and Analysis, 2012, 1(3-4): 150-157.
[39] Bielawski M, Beres W. FE modelling of surface stress in erosion-resistant coatings under single particle impact[J]. Wear, 2007, 267: 167-175.
[40] Ashrafrizadeh H, Ashrafrizadeh F. A numerical 3D simulation for prediction of wear caused by solid particle impact[J]. Wear, 2012, 276-277: 75-84.
[41] Zheng Q L, Tong X P. Application and prospect of vapour deposition technique in product[J]. Aviation Precision Manufacturing Technology, 2013, 49(2): 23-27 (in Chinese). 郑秋麟, 佟向鹏. 气相沉积技术在产品中的应用及发展[J]. 航空精密制造技术, 2013, 49(2): 23-27.
[42] Wang C B, Liu J J, Wei D P, et al. Tribological materials and surface engineering[M]. Beijing: National Defense Industry Press, 2012: 99-123 (in Chinese). 王成彪, 刘家浚, 韦淡平, 等. 摩擦学材料及表面工程[M]. 北京: 国防工业出版社, 2012: 99-123.
[43] Zhao Y H, Dong L M. Recent research progress of plasma nitriding and physical vapor deposition duplex treatment[J]. Materials for Mechanical Engineering, 2012, 36(6): 1-4 (in Chinese). 赵彦辉, 董利民. 等离子体氮化与物理气相沉积复合处理的研究进展[J]. 机械工程材料, 2012, 36(6): 1-4.
[44] Li F, Zhu Y. Review on magnetron sputtering technology and its development[J]. Vacuum Electronics, 2011(3): 49-54 (in Chinese). 李芬, 朱颖. 磁控溅射技术及其发展[J]. 真空电子技术, 2011(3): 49-54.
[45] Yu X, Yue W. Study of fatigue life evaluation method for leading edge of helicopter composite blade[J]. Helicopter Technique, 2009, 159(3): 35-38 (in Chinese). 余洵, 岳巍. 直升机复合材料桨叶前缘包铁疲劳定寿方法研究[J]. 直升机技术, 2009, 159(3): 35-38.
[46] Braun M. Magnetron sputtering technique[M]. London: Springer, 2015: 122.
[47] Blinkov V, Anikin V N, Soboley N A, et al. Development of a hybrid process of obtaining wear-resistant coatings based on ion-plasma arc sputtering and magnetron sputtering[J]. Russian Journal of Non-Ferrous Metals, 2010, 51(4): 370-375.
[48] Schell J D, Hein G, Mendez M, et al. Erosion durability improvement of T64 engine for military helicopters[C]//American Helicopter Society 60th Annual Forum. Virginia: American Helicopter Society, 2004: 7-10.
[49] Ma Z H, Li J G. Sand and dust test technology of military equipment[J]. Equipment Environmental Engineering, 2007, 4(6): 68-72 (in Chinese). 马志宏, 李金国. 军用装备砂尘环境试验技术[J]. 装备环境工程, 2007, 4(6): 68-72.
[50] Wu X M, Shang X Y. Study on erosion resistance of three stainless steels using solid particles[J]. Journal of Aeronautical Materials, 2012, 32(3): 68-72 (in Chinese). 吴小梅, 商晓宇. 三种不锈钢材料抗砂尘冲蚀性能研究[J]. 航空材料学报, 2012, 32(3): 68-72.
[51] Wu X Y, Han Z H. Study of abradable seal coatings deposited by supersonic atmospheric plasma spraying[J]. Heavy Machinery, 2012(5): 45-49 (in Chinese). 吴秀英, 韩志海. 超音速等离子喷涂沉积可磨耗封严涂层研究[J]. 重型机械, 2012(5): 45-49.
[52] Ye C D, Long D, Kong D J, et al. Friction and wear properties of TiN/AlTiN coatings prepared by PVD[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45(Supp.1): 144-148 (in Chinese). 叶存冬, 龙丹, 孔德军, 等. PVD法制备TiN/AlTiN涂层的摩擦与磨损性能[J]. 四川大学学报: 工程科学版, 2013, 45(增刊1): 144-148.
[53] Kong D J, Fu Y Z, Wu Y Z, et al. Surface and interface properties of TiN films grown by physical vapor deposition[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(12): 1078-1083 (in Chinese). 孔德军, 付永忠, 吴永忠, 等. PVD法制备TiN涂层界面特征与摩擦磨损性能[J]. 真空科学与技术学报, 2012, 32(12): 1078-1083.
[54] Pu C H, Xu B S, Wang H D, et al. Wear lifetime of 3Cr13 stainless steel coating under various loads[J]. Tribology, 2010, 30(1): 75-79 (in Chinese). 濮春欢, 徐滨士, 王海斗, 等. 不同载荷下3Cr13不锈钢涂层磨损寿命研究[J]. 摩擦学学报, 2010, 30(1): 75-79.
[55] Du J, Zhang P, Zhu X Y, et al. Research on structure and properties of Zr(AlCu)N erosion-resistant coatings on titanium alloy surface[J]. Acta Armamentarii, 2011, 32(12): 1504-1509 (in Chinese). 杜军, 张平, 朱晓莹, 等. 钛合金表面耐冲蚀Zr(AlCu)N涂层的结构与性能[J]. 兵工学报, 2011, 32(12): 1504-1509.
[56] Li H Y, Fang Y H, Xiao K, et al. Progress of failure behavior of coatings in hot and dry atmosphere environment[J]. Science & Technology Review, 2012, 30(34): 76-79 (in Chinese). 李慧艳, 方月华, 肖葵, 等. 干热大气环境中涂层材料失效行为研究进展[J]. 科技导报, 2012, 30(34): 76-79.
[57] Hao Y H, Xing Y M, Yang S T, et al. Erosion mechanism and coating eroded evaluation method of steel structure under sandstorm environment[J]. Tribology, 2010, 30(1): 26-31 (in Chinese). 郝贠洪, 邢永明, 杨诗婷, 等. 风沙环境下钢结构表面涂层冲蚀行为与侵蚀机理研究[J]. 摩擦学学报, 2010, 30(1): 26-31.
[58] Hao Y H, Li Y. Erosion-behaviors of the coating on steel structure eroded at low erosion-angle in sandstorm[J]. Tribology, 2013, 33(4): 345-348 (in Chinese). 郝贠洪, 李永. 风沙环境下钢结构涂层低角度冲蚀特性研究[J]. 摩擦学学报, 2013, 33(4): 345-348.
[59] Hao Y H, Xing Y M, Yang S T, et al. The erosion-wear mechanical properties of the coating of steel structure subject to sandstorm[J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 350-355 (in Chinese). 郝贠洪, 邢永明, 杨诗婷, 等. 风沙环境下钢结构涂层的冲蚀磨损力学性能研究[J]. 应用力学学报, 2013, 30(3): 350-355.
[60] Chai Y, Wang X D, He G Y. Effect of Si-C-N super hard film on the friction and wear properties of TC4 alloy[C]//Abstract book of 2013 CCTAM. Beijing: CSTAM, 2013:140-142 (in Chinese). 柴艳, 王学德, 何光宇. Si-C-N超硬薄膜对TC4合金抗磨擦磨损性能的影响[C]//中国力学大会2013论文摘要集. 北京: 中国力学学会, 2013: 140-142.
[61] He G Y, Li Y H, Wang J, et al. Anti-erosion coating technique based on plasma and its application in helicopter aero-engines[J]. High Voltage Engineering, 2014, 40(7): 2133-2139 (in Chinese). 何光宇, 李应红, 王健, 等. 基于等离子体的抗冲蚀涂层技术及其在直升机发动机领域的应用[J]. 高压电技术, 2014, 40(7): 2133-2139. |