航空学报 > 2015, Vol. 36 Issue (6): 1858-1866   doi: 10.7527/S1000-6893.2014.0220

轻型复合材料机翼铺层优化设计与分析

冯雁1, 郑锡涛1, 吴淑一2, 刘振东1   

  1. 1. 西北工业大学 航空学院, 西安 710072;
    2. 清华大学 微纳米力学与多学科交叉创新研究中心, 北京 100084
  • 收稿日期:2014-07-22 修回日期:2014-08-25 出版日期:2015-06-15 发布日期:2014-09-23
  • 通讯作者: 郑锡涛 Tel.: 029-88495994 E-mail: zhengxt@nwpu.edu.cn E-mail:zhengxt@nwpu.edu.cn
  • 作者简介:冯雁 女, 硕士研究生。主要研究方向: 复合材料结构损伤容限与优化设计。 E-mail: birdyan@yeah.net;郑锡涛 男, 博士, 教授, 博士生导师。主要研究方向: 复合材料宏细观力学性能。 Tel: 029-88495994 E-mail: zhengxt@nwpu.edu.cn;吴淑一 男, 博士研究生。主要研究方向: 生物力学。 E-mail: wusy13@mails.tsinghua.edu.cn;刘振东 男, 硕士研究生。主要研究方向: 复合材料结构损伤容限与优化设计。 E-mail: lzdid@126.com
  • 基金资助:

    西北工业大学毕业设计(论文)重点扶持项目 (GCKY9002)

Layup optimization design and analysis of super lightweight composite wing

FENG Yan1, ZHENG Xitao1, WU Shuyi2, LIU Zhendong1   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
  • Received:2014-07-22 Revised:2014-08-25 Online:2015-06-15 Published:2014-09-23
  • Supported by:

    Project of Graduation Design at Northwestern Polytechnical University (GCKY9002)

摘要:

在给定全复合材料机翼结构几何外形尺寸条件下,以最高载荷/质量比(P/W)为目标,提出了一种复合材料机翼铺层优化设计与分析方法。主要进行了三方面优化工作:铺层厚度优化、铺层比例优化以及铺层顺序优化。首先,在初始结构方案的基础上,利用有限元分析软件ANSYS对复合材料层合板进行结构优化,得到了复合材料层合板铺层厚度与铺层比例。然后,插值拟合生成结构性能(即P/W)在设计区域的空间分布曲面,量化材料分布对结构性能的影响,得到了最佳材料分配比例,为分析复合材料铺层提供了新方法。最后,根据已经得到的铺层厚度和铺层比例方案,运用遗传算法对铺层顺序进行优化,得到最优铺层方案。根据最终优化的铺层设计方案,加工制造机翼样件并完成了试验验证。数值模拟结果与试验结果非常吻合,其中,破坏载荷的相对误差为-1.91%,结构刚度的相对误差为1.10%。与初始设计相比,载荷/质量比提高了70.23%(忽略翼梢小翼),证明本文优化工作的合理性与有效性。

关键词: 复合材料, 载荷/质量比, 优化设计, 结构优化, 遗传算法

Abstract:

In order to enhance the value of P/W (the ratio of load to mass) of super lightweight composite wing structure to a possibly highest level under the given configurations, this paper develops a structural optimization framework to obtain the optimal layups. The optimization framework focuses on three aspects: the total thickness of the plies, the proportion of plies in each orientation angle and the stacking sequences. Firstly, based on the initial designed wing, the first two aspects are achieved by the structural optimization on ANSYS. Then, to quantify the effect of material distribution on the structural efficiency (P/W), a response surface of P/W with respect to the material distribution in the design region is acquired. Therefore, this paper obtains the most effective material distribution and this method can provide a new approach to analyze the layups. Then, based on the results of structural optimization, this paper launches a genetic algorithm process to optimize the stacking sequences and finally obtains the most effective layups. Moreover, the optimized wing of this paper is manufactured and tested. As the results show, the numerical results fit the experimental data extremely well, the relative error of the failure load is -1.91% and the relative error of stiffness is only 1.10%. Meanwhile, when compared with the initial design, the optimization framework causes an increase of 70.23% in the value of P/W (ignore the winglets), which means that the optimization framework of this paper is reasonable and effective.

Key words: composites, ratio of load to mass, optimization design, structure optimization, genetic algorithms

中图分类号: