航空学报 > 2013, Vol. 34 Issue (12): 2668-2681   doi: 10.7527/S1000-6893.2013.0328

一种基于结构动力学的柔性扑翼气动结构耦合方法研究

陈利丽1,2, 宋笔锋1, 宋文萍1, 杨文青1   

  1. 1. 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072;
    2. 中航工业第一飞机设计研究院, 陕西 西安 710089
  • 收稿日期:2013-01-25 修回日期:2013-06-27 出版日期:2013-12-25 发布日期:2013-08-12
  • 通讯作者: 宋笔锋,Tel.:029-88495914E-mail:bfsong@nwpu.edu.cn E-mail:bfsong@nwpu.edu.cn
  • 作者简介:陈利丽女,博士研究生。主要研究方向:微型飞行器空气动力学。Tel:029-86832930E-mail:lilichen@mail.nwpu.edu.cn;宋笔锋男,博士,教授,博士生导师。主要研究方向:高生存力技术、系统/结构/机构可靠性与维修性、临近空间飞行器、微型飞行器等。Tel:029-88495914E-mail:bfsong@nwpu.edu.cn;宋文萍女,博士,教授,博士生导师。主要研究方向:非定常空气动力学,气动噪声预测,螺旋桨、旋翼桨叶、风力机的气动计算与设计等。Tel:029-88491144E-mail:wpsong@nwpu.edu.cn;杨文青女,博士后。主要研究方向:微型飞行器空气动力学。Tel:029-88491144E-mail:wenqingyang@nwpu.edu.cn
  • 基金资助:

    国家自然科学基金(20100481369)

Research on Aerodynamic-structural Coupling of Flexible Flapping Wings

CHEN Lili1,2, SONG Bifeng1, SONG Wenping1, YANG Wenqing1   

  1. 1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Ploytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China
  • Received:2013-01-25 Revised:2013-06-27 Online:2013-12-25 Published:2013-08-12

摘要:

基于结构动力学理论,发展了一套适用于扑翼气动结构耦合特性的数值模拟方法:采用计算流体力学(CFD)方法数值模拟扑翼的非定常绕流,得到扑翼的非定常气动特性,基于计算结构力学(CSD)方法求解扑翼结构动力学方程得到扑翼的动态结构变形位移,从而得到周期内各时刻的扑翼外形,重复上述过程直至气动、结构变形均收敛。其中,扑翼非定常气动特性通过求解雷诺平均Navier-Stokes方程得到。对于结构动态特性,首先基于Hamilton原理推导了扑翼的结构运动方程,并对动能和应变能进行变分,得到扑翼动力学方程,然后利用结构有限元方法对该方程进行离散并求解。通过与实验结果进行对比,验证了本文所发展求解程序的有效性。在此基础上针对实际柔性扑翼的简化模型展开数值模拟,研究了柔性变形对扑翼气动特性的影响,并进一步对刚性和柔性扑翼流场细节进行比较,分析研究了结构变形对柔性扑翼气动特性的影响机理。

关键词: 扑翼, 气动结构耦合, 非定常流动, 空气动力学, 结构动力学, 柔性结构

Abstract:

Due to the coupling between large prescribed motions and flexible deformation, classical dynamics theory cannot be applied to a flapping wing's aeroelastic studies. In this paper, a dynamic aerodynamic-structural coupling computational framework is developed which is able to simulate the aerodynamic-structural coupling characteristics of a flapping wing. First of all, the periodic aerodynamic load of the flapping wing is obtained by a computational fluid dynamics (CFD) solver; then a computational structure dynamics (CSD) solver is used to get the periodic structural deformation as well as the periodic shape of the flapping wing. Repeat the procedure until structural deformation is converged. The flapping wing's unsteady aerodynamic characteristics are obtained by solving the Reynolds average Navier-Stokes equations. Structural dynamic equations capable of describing the flapping wing's movement are derived by use of the Hamilton principle, and then they are discretized through the finite element method. The discrete forms of the dynamic structural equations are then reduced to a series of easy-to-solve second order differential equations through modal analysis. Computational results show good agreement with experimental results, which proves that the proposed method is valid and suitable for simulation of a flexible flapping wing. Both rigid and flexible wing results of flow field details are further presented to demonstrate the effects of wing flexibility on aerodynamic performance.

Key words: flapping wing, aerodynamic-structural coupling, unsteady flow, aerodynamics, structural dynamics, flexible structure

中图分类号: