[1] Gomez M. A typical spacecraft autonomy system[C]//IMCL Workshop on Machine Learning for Autonomous Space Applications, 2003.
[2] Cancro G J. APL spacecraft autonomy: then, now, and tomorrow[J]. Johns Hopkins APL Technical Digest, 2010, 29(3): 226-233.
[3] Atkinson D J, Smith B D. Autonomy technology at JPL[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001.
[4] Pell B, Bernard D E, Chien S A, et al. An autonomous spacecraft agent prototype[J]. Autonomous Robots, 1998, 5(1): 29-52.
[5] Bermyn J. PROBA—project for on-board autonomy[J]. Air & Space Europe, 2000, 2(1): 70-76.
[6] Teston F, Creasey R, Bermyn J, et al. PROBA: ESA's autonomy and technology demonstration mission[C]//The 13th Annual AIAA/USU Conference on Small Satellites, 1999.
[7] Gantois K, Teston F, Montenbruck O, et al. PROBA-2 mission and new technologies overview[C]//Small Satellite Systems and Services—the 4S Symposium, 2006.
[8] Chu Y H, Wang D Y, Huang X Y. Observability analysis based information fusion integrated navigation[J]. Aerospace Control, 2011, 29(2): 31-36. (in Chinese) 褚永辉, 王大轶, 黄翔宇. 基于能观度分析的信息融合组合导航方法研究[J]. 航天控制, 2011, 29(2): 31-36.
[9] Gong J, Yang H, Zhao W, et al. Knowledge inference based self fault diagnosis method for spacecraft[J]. Aerospace Control and Application, 2011, 37(4): 19-23. (in Chinese) 龚健, 杨桦, 赵玮, 等. 基于知识推理的航天器自主故障诊断方法[J]. 空间控制技术与应用, 2011, 37(4): 19-23.
[10] Li Z B, Wu H X, Xie Y C, et al. Experimental platform for spacecraft intelligent control[J]. Acta Automatica Sinica, 2001, 27(5): 695-699. (in Chinese) 李智斌, 吴宏鑫, 谢永春, 等. 航天器智能控制实验平台[J]. 自动化学报, 2001, 27(5): 695-699.
[11] Dai S W, Sun H X. Autonomous control for spacecraft[J]. Chinese Journal of Space Science, 2002, 22(2): 147-153. (in Chinese) 代树武, 孙辉先. 卫星运行中的自主控制技术[J]. 空间科学学报, 2002, 22(2): 147-153.
[12] Li B Q, Li X Z, Wang H F, et al. Mission planning method of the greedy algorithm and dynamic programming[J]. Microelectronics & Computer, 2013, 30(2): 144-147. (in Chinese) 李博权, 李绪志, 王红飞, 等. 贪婪算法与动态规划结合的任务规划方法[J]. 微电子学与计算机, 2013, 30(2): 144-147.
[13] Pan Z S, Meng X, Zheng J H, et al. Research on simulation elements of space missions demonstration platform[J]. Journal of System Simulation, 2012, 24(7): 1366-1372. (in Chinese) 潘忠石, 孟新, 郑建华, 等. 空间任务论证平台仿真要素研究[J]. 系统仿真学报, 2012, 24(7): 1366-1372.
[14] Huang H B, Ma G F, Zhuang Y F, et al. Real-time re-planning for satellite formation reconfiguration in deep space[J]. Journal of Astronautics, 2012, 33(3): 325-333. (in Chinese) 黄海滨, 马广富, 庄宇飞, 等. 深空环境下卫星编队飞行队形重构实时重规划[J]. 宇航学报, 2012, 33(3): 325-333.
[15] Chen Y W, Yao F, Li J F, et al. A learnable ant colony optimization to the mission planning of multiple satellites[J]. Systems Engineering-Theory & Practice, 2013, 33(3): 791-801. (in Chinese) 陈英武, 姚锋, 李菊芳, 等. 求解多星任务规划问题的演化学习型蚁群算法[J]. 系统工程理论实践, 2013, 33(3): 791-801.
[16] Sun K, Bai G Q, Chen Y W, et al. Action planning for agile earth-observing satellite mission planning problem[J]. Journal of National University of Defense Technology, 2012, 34(6): 141-147. (in Chinese) 孙凯, 白国庆, 陈英武, 等. 面向动作序列的敏捷卫星任务规划问题[J]. 国防科技大学学报, 2012, 34(6): 141-147.
[17] Xu R, Cui P Y, Xu X F. Realization of multi-agent planning system for autonomous spacecraft[J]. Advances in Engineering Software, 2005, 36(4): 266-272.
[18] Xu R, Cui P Y, Xu X F. Design for autonomous mission planning system[J]. Aircraft Engineer and Aerospace Technology: An International Journal, 2003, 75(4): 365-371.
[19] Wu H X, Hu H X, Xie Y C, et al. Several questions on autonomous rendezvous docking[J]. Journal of Astronautics, 2003, 24(2): 132-137, 143. (in Chinese) 吴宏鑫, 胡海霞, 谢永春, 等. 自主交会对接若干问题[J]. 宇航学报, 2003, 24(2): 132-137, 143.
[20] Cui H T, Cheng X J, Xu R, et al. RHC-based attitude control of spacecraft under geometric constraints[J]. Aircraft Engineering and Aerospace Technology, 2011, 83(5): 296-305.
[21] Xu R, Cheng X J, Cui H T. Autonomous pointing avoidance of spacecraft attitude maneuver using backstepping control method[M]//Zhu M. Electrical Engineering and Control. Berlin: Springer-Verlag Berlin Heidelberg, 2011: 817-825.
[22] Pell B, Sawyer S R, Muscettola N, et al. Mission operations with an autonomous agent[C]//1998 IEEE Aerospace Conference, 1998, 2: 289-313.
[23] Lee S C, Santo A G. Reducing mission operations costs through spacecraft autonomy: the near earth asteroid rendezvous (NEAR) experience[J]. Journal of Reducing Space Mission Cost, 1998, 1(1): 87-104.
[24] Marshall M H, Low G D. Final report of the autonomous spacecraft maintenance study group, NASA-CR-164076[R]. 1981.
[25] Chiu M C, Von-Mehlem U I, Willey C E, et al. ACE spacecraft[J]. Space Science Reviews, 1998, 86(1-4): 257-284.
[26] Wozniak J J. Vehicle technology at APL[J]. Johns Hopkins APL Technical Digest, 2003, 24(1): 19-30.
[27] Wiley S, Herbert G, Mosher L. Design and development of the NEAR propulsion system, AIAA-1995-2977[R]. Reston: AIAA, 1995.
[28] Rasmussen R D, Singh G, Rathbun D B, et al. Behavioral model pointing on Cassini using target vectors[C]//Proceedings of the Annual Rocky Mountain Guidance and Control Conference, 1995: 91-110.
[29] Singh G, Macala G, Wong E, et al. A constraint monitor algorithm for the Cassini spacecraft, AIAA-1997-3526[R]. Reson: AIAA, 1997.
[30] Chien, S, Doyle R, Davies A G, et al. The future of AI in space[J]. IEEE Intelligent Systems, 2006, 21(4): 64-69.
[31] Rajan K, Shirley M, Taylor W, et al. Ground tools for autonomy in the 21st century[C]//2000 IEEE Aerospace Conference Proceedings, 2000, 7: 649-659.
[32] Cancro G, Innanen W, Turner R, et al. Uploadable executable specification concept for spacecraft autonomy systems[C]//2007 IEEE Aerospace Conference Proceedings, 2007: 1-12.
[33] Turner R, Hooda S, Gersh J, et al. ExecSpec: visually designing and operating a finite state machine-based spacecraft autonomy system[C]//Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.
[34] Steel R, Niezette M, Cesta A, et al. Advanced planning and scheduling initiative: MrSPOCK AIMS for XMAS in the space domain[C]//Proceedings of IJCAI-09 Workshop on Artificial Intelligence in Space, 2009.
[35] Verfaillie G, Infantes G, Lematre M, et al. On-board decision-making on data downloads[C]//The 7th International Workshop on Planning and Scheduling for Space (IWPSS-11), 2011.
[36] Nayak P, Kurien J, Dorais G, et al. Validating the DS-1 remote agent experiment[C]//Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999: 349.
[37] Ghallab M, Nau D, Traverso P. Automated planning: theory & practice[M]. Burlington: Morgan Kaufmann, 2004.
[38] Chien S, Smith B, Rabideau G, et al. Automated planning and scheduling for goal-based autonomous spacecraft[J]. IEEE Intelligent Systems and their Applications, 1998, 13(5): 50-55.
[39] Katz D S, Some R R. NASA advances robotic space exploration[J]. Computer, 2003, 36(1): 52-61.
[40] Chien S, Rabideau G, Knight R, et al. ASPEN-automated planning and scheduling for space mission operations[C]//The Six International Conference on Space Operations (SpaceOps 2000), 2000.
[41] Chien S A, Knight R, Stechert A, et al. Using iterative repair to improve the responsiveness of planning and scheduling[C]//Proceedings of the Fifth International Conference on Artificial Intelligence Planning and Scheduling, 2000: 300-307.
[42] Knight S, Rabideau G, Chien S, et al. Casper: space exploration through continuous planning[J]. IEEE Intelligent Systems, 2001, 16(5): 70-75.
[43] Chien S, Sherwood R, Tran D, et al. Lessons learned from autonomous sciencecraft experiment[C]//Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, 2005: 11-18.
[44] European Cooperation for Space Standardization. Space engineering-space segment operability, ECSS-E-70-11[R]. Noordwijk: ESA Publications Division, 2005.
[45] Woods M, Long D, Baldwin L, et al. On-board planning and scheduling for the ExoMars mission[C]//Proceedings of the DASIA, 2006: 22-25.
[46] Mose Sorensen E, Ferri P. Technology driver-the Rosetta mission[C]//IEE 5th CCSDS Workshop on New Technologies, New Standards, 1998: 2/1-2/8.
[47] Pekala M, Cancro G, Moore J. Verifying executable specifications of spacecraft autonomy[C]//Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.
[48] Verfaillie G, Charmeau M C. A generic modular architecture for the control of an autonomous spacecraft[C]//The 5th International Workshop on Planning and Scheduling for Space (IWPSS-06), 2006.
[49] Alami R, Chatila R, Fleury S, et al. An architecture for autonomy[J]. International Journal of Robotics Research, 1998, 17(4): 315-337.
[50] Barrett A. Autonomy architectures for a constellation of spacecraft[C]//Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999: 291.
[51] Fesq L, Aljabri A, Anderson C, et al. Spacecraft autonomy in the new millennium[C]//19th Annual AAS Guidance and Control Conference, 1996.
[52] Smith B, Millar W, Dunphy J, et al. Validation and verification of the remote agent for spacecraft autonomy[C]//Proceedings of 1999 IEEE Aerospace Conference, 1999, 1: 449-468.
[53] Low K H, Leow W K, Ang Jr M H. A hybrid mobile robot architecture with integrated planning and control[C]//Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems, 2002: 219-226.
[54] Charmeau M C, Bensana E. AGATA: a lab bench project for spacecraft autonomy[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005.
[55] Gregory N M, Dorais G A, Fry C, et al. IDEA: planning at the core of autonomous reactive agents[C]//Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.
[56] Chien S A, Johnston M, Frank J, et al. A generalized timeline representation, services, and interface for automating space mission operations[C]//The 12th International Conference on Space Operations (SpaceOps 2012), 2012.
[57] Frank J D, Clement B J, Chachere J M, et al. The challenge of configuring model-based space mission planners[C]//The 7th International Workshop on Planning and Scheduling for Space (IWPSS-11), 2011.
[58] Morris P, Schwabacher M, Dalal M, et al. Embedding temporal constraints for coordinated execution in habitat automation[C]//The 8th International Workshop on Planning and Scheduling for Space (IWPSS-13), 2013.
[59] Johnston M D. Spike: AI scheduling for NASA's hubble space telescope[C]//Sixth Conference on Artificial Intelligence Applications, 1990: 184-190.
[60] Museettola N. HSTS: integrating planning and scheduling, CMU-RI-TR-93-05[R]. Pittsburgh: Robotics Institute, Carnegie Mellon University, 1993.
[61] Bedrax-Weiss T, McGann C, Iatauro M. EUROPA2: plan database services for planning and scheduling applications[C]//Workshop of System Demonstration (ICAPS 2005), 2005: 18-19.
[62] Verfaillie G, Pralet C, Lematre M. How to model planning and scheduling problems using constraint networks on timelines[J]. Knowledge Engineering Review, 2010, 25(3): 319.
[63] Ghallab M, Howe A, Knoblock C, et al. PDDL—the planning domain definition language, Tech Report CVC TR-98-003/DCS TR-1165[R]. 1998.
[64] Fox M, Long D. PDDL2.1: an extension to PDDL for expressing temporal planning domains[J]. Journal of Artificial Intelligence Research, 2003, 20: 61-124.
[65] Elachi. C. The critical role of communications and navigation technologies to the success of space science enterprise missions[C]//Keynote Address DESCANSO International Symposium, 1999.
[66] Bhaskaran S, Riedel J E, Synnott S P. Autonomous optical navigation for interplanetary missions[C]//Proceedings of SPIE, 1996, 2810: 32-43.
[67] Desai S, Han D, Bhaskaran S, et al. Autonomous optical navigation[R]. 2001.
[68] Lisman S S, Chang D H, Singh G, et al. Autonomous guidance and control of a solar electric propulsion spacecraft, AIAA-1997-3818[R]. Reston: AIAA, 1997.
[69] Bhaskaran S, Desai S, Dumont P, et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 1998.
[70] Bhat R S, Stumpf P W, Frauenholz R B. Deep impact ground navigation maneuver design and performance[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2006: 123-142.
[71] Uo M, Shirakawa K, Hashimoto T, et al. Hayabusa's touching-down to Itokawa-autonomous guidance and navigation[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2006: 1805-1816.
[72] Froyum K, Goepfert S, Henrickson J, et al. Honeywell micro electro mechanical systems (MEMS) inertial measurement unit (IMU)[C]//2012 IEEE/ION Position Location and Navigation Symposium (PLANS), 2012: 831-836.
[73] Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1-4): 5-56.
[74] Bregon A, Daigle M, Roychoudhury I. An integrated framework for model-based distributed diagnosis and prognosis[C]//Annual Conference of the Prognostics and Health Management Society, 2012: 416-426.
[75] Pecheur C, Simmons R. From livingstone to SMV[M]//Rash J L, Truszkowski W, Hinchey M G. Formal Approaches to Agent-based Systems. Berlin: Springer-Verlag Berlin Heidelberg, 2001: 103-113.
[76] Hu Q L, Friswell M I, Wagg D J, et al. Adaptive backstepping fault-tolerant control for flexible spacecraft with bounded unknown disturbances[C]//Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference, 2009: 788-793.
[77] Kurtoglu T, Tumer I Y. A graph-based fault identification and propagation framework for functional design of complex systems[J]. Journal of Mechanical Design, 2008, 130(5): 051401.
[78] Kuhn L, de Kleer J, Liu J. Online model-based diagnosis for multiple, intermittent and interaction faults[C]//Annual Conference of the Prognostics and Health Management Society, 2009.
[79] Castano A, Fukunaga A, Biesiadecki J, et al. Automatic detection of dust devils and clouds on Mars[J]. Machine Vision and Applications, 2008, 19(5-6): 467-482.
[80] Thompson D, Niekum S, Smith T, et al. Automatic detection and classification of features of geologic interest[C]//2005 IEEE Aerospace Conference, 2005: 366-377.
[81] Chien S, Sherwood R, Tran D, et al. Using autonomy flight software to improve science return on earth observing one[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 196-216.
[82] Castano R, Wagstaff K L, Chien S, et al. On-board analysis of uncalibrated data for a spacecraft at Mars[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007: 922-930.
[83] Chien S A, Tran D, Rabideau G, et al. Improving the operations of the earth observing one mission via automated mission planning, AIAA-2010-2199[R]. Reston: AIAA, 2010.
[84] Hayden D S, Chien S, Thompson D R, et al. Onboard clustering of aerial data for selective data return[C]//Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2010.
[85] Thompson D R, Smith T, Wettergreen D. Information-optimal selective data return for autonomous rover traverse science and survey[C]//IEEE International Conference on Robotics and Automation, 2008: 968-973.
[86] Rabideau G, Chien S, McLaren D. Onboard run-time goal selection for autonomous operations, AIAA-2010-2203[R]. Reston: AIAA, 2010.
[87] Rabideau G, Chien S, McLaren D. Tractable goal selection for embedded systems with oversubscribed resources[J]. Journal of Aerospace Computing, Information, and Communication, 2011, 8(5): 151-169.
[88] Hayden D S, Chien S, Thompson D R, et al. Onboard clustering of aerial data for selective data return[C]//Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2010.
[89] Stottler R. Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques[C]//The 11th International Conference on Space Operations (SpaceOps 2010), 2010.
[90] Gerevini A E, Serina I. Efficient plan adaptation through replanning windows and heuristic goals[J]. Fundamenta Informaticae, 2010, 102(3-4): 287-323.
[91] Donati A, Policella N. AI planning and scheduling infusion in space: ESA achievements and perspectives[C]//The 11th International Conference on Space Operations (SpaceOps 2010), 2010. |