收稿日期:
2022-05-10
修回日期:
2022-05-24
接受日期:
2022-06-01
出版日期:
2023-04-25
发布日期:
2022-07-08
通讯作者:
邓小龙
E-mail:xiaolong.deng@outlook.com
基金资助:
Xiaolong DENG(), Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU
Received:
2022-05-10
Revised:
2022-05-24
Accepted:
2022-06-01
Online:
2023-04-25
Published:
2022-07-08
Contact:
Xiaolong DENG
E-mail:xiaolong.deng@outlook.com
Supported by:
摘要:
基于风场利用的智能平流层浮空器具有驻空时间长、系统构成简单、部署速度快、使用效费比高、自主能力强等优点,是临近空间飞行器发展的重要方向。针对典型基于风场利用的平流层浮空器Loon项目,通过对项目实施及实践探索的综述,深入分析其囊体材料与结构、高度调控、能源与推进、安控回收、风场建模、自主控制等关键技术特点,基于学科建模对总体参数、超热超压、气体泄漏、能源平衡、轨迹规划等方面进行仿真研究,总结了Loon智能平流层浮空器的技术特点,为基于风场利用的平流层浮空器设计与应用研究提供参考。
中图分类号:
邓小龙, 杨希祥, 朱炳杰, 麻震宇, 侯中喜. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412-127412.
Xiaolong DENG, Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127412-127412.
表 1
Loon气球各系列的主要参数
气球系列 | Lark | Merlin | Ibis | Nighthawk | Osprey | Osprey Large | Plover | Quail |
---|---|---|---|---|---|---|---|---|
研制年份 | <2015 | <2015 | <2016 | 2015—2017 | 2016—2017 | 2017—2018 | 2017—2021 | 2019—2021 |
吊舱类型 | Opt. 6 | Opt. 6 | Opt. 6 | Opt. 6&V1.0 | V1.2 | V1.3 | V1.3&V1.4 | V1.6 |
飞行次数/次 | 40+ | 54+ | 346 | 440 | 235 | 159 | 603 | 42 |
体积/m3 | 750 | 932 | 1 169 | 1 273 | 1 492 | 1 544 | 1 840 | 2 760 |
直径/m | 13 | 14 | 15 | 15.2 | 15.6 | 16 | 17 | 19.7 |
副气囊构型 | 底置 | 底置 | 底置 | 内核/侧置 | 侧置 | 侧置 | 外壳 | 外壳 |
高度调控范围/km | 2 | 2 | 2 | 2,3 | 2,4 | 2,4 | 4 | 4 |
氦气囊占比/% | 95 | 95 | 95 | 95,75 | 95,75 | 95,75 | 95 | 95 |
平均驻空天数/天 | 13 | 41 | 41 | 53 | 61 | 85 | 134 | 240 |
氦气质量/kg | 12.20 | 15.72 | 18.56 | 18.56 | 21.80 | 22.88 | 26.36 | 33.9 |
系统质量/kg | 67 | 91 | 102 | 98 | 109 | 112 | 145 | 192 |
1 | 侯中喜, 杨希祥, 乔凯, 等. 平流层飞艇技术[M]. 北京: 科学出版社, 2019. |
HOU Z X, YANG X X, QIAO K, et al. Stratospheric airship technology[M]. Beijing: Science Press, 2019 (in Chinese). | |
2 | YANG X W, YANG X X, DENG X L. Horizontal trajectory control of stratospheric airships in wind field using Q-learning algorithm[J]. Aerospace Science and Technology, 2020, 106: 106100. |
3 | ATHAR R U, MATHEWS T E, LAVIGNE J M, et al. Stratospheric C4ISR unmanned station (STRATACUS)[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017. |
4 | 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报, 2019, 21(4): 504-511. |
PENG G L, WAN Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J]. Journal of Geo-Information Science, 2019, 21(4): 504-511 (in Chinese). | |
5 | Khoury G A. Airship technology [M].2nd ed. Cambridge: Cambridge University Press, 2012. |
6 | 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9): 224579. |
YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224579 (in Chinese). | |
7 | XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships: A review[J]. Acta Astronautica, 2020, 167: 245-259. |
8 | 杨燕初, 张航悦, 赵荣. 零压式高空气球球形设计与参数敏感性分析[J]. 国防科技大学学报, 2019, 41(1): 58-64. |
YANG Y C, ZHANG H Y, ZHAO R. Shape design of zero pressure high altitude balloon and sensitivity analysis of key parameters[J]. Journal of National University of Defense Technology, 2019, 41(1): 58-64 (in Chinese). | |
9 | 顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12, 2. |
GU Y D. Balloon scientific observation for 100 years[J]. Modern Physics, 2020, 32(2): 3-12, 2 (in Chinese). | |
10 | VARGAS A, DUBOURG V, RAIZONVILLE P, et al. The CNES 2015 - 2017 balloon program[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017. |
11 | FAIRBROTHER D A. 2017 NASA balloon program update[C]∥ AIAA Balloon Systems Conference. Reston: AIAA, 2017. |
12 | RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1485-1501. |
13 | YAJIMA N, IMAMURA T, IZUTSU N, et al. Introduction[M]∥ Scientific ballooning. New York: Springer, 2009: 1-14. |
14 | VANDERMEULEN I, GUAY M, MCLELLAN P J. Distributed control of high-altitude balloon formation by extremum-seeking control[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 857-873. |
15 | DU H F, LV M Y, LI J, et al. Station-keeping performance analysis for high altitude balloon with altitude control system[J]. Aerospace Science and Technology, 2019, 92: 644-652. |
16 | 邓小龙, 丛伟轩, 李魁, 等. 风场综合利用的新型平流层浮空器轨迹设计[J]. 宇航学报, 2019, 40(7): 748-757. |
DENG X L, CONG W X, LI K, et al. Trajectory design of a novel stratospheric aerostat based on comprehensive utilization of wind fields[J]. Journal of Astronautics, 2019, 40(7): 748-757 (in Chinese). | |
17 | HALL J L, CAMERON J, PAUKEN M, et al. Altitude-controlled light gas balloons for Venus and titan exploration[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
18 | 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 022941. |
DENG X L, YANG X X, MA Z Y, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022941 (in Chinese). | |
19 | LIN K, ZHENG Z W, WU Z, et al. Path following of a stratospheric satellite by the aid of wind currents[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 3983-4003. |
20 | VOSS P B, RIDDLE E E, SMITH M S. Altitude control of long-duration balloons[J]. Journal of Aircraft, 2005, 42(2): 478-482. |
21 | 孙娜, 龙飞, 周雷, 等. 临近空间伞张式飞艇气囊结构原理性研究[J]. 宇航学报, 2012, 33(3): 285-290. |
SUN N, LONG F, ZHOU L, et al. Envelope structure principle research on a space umbrella-like inflated airship in novel near[J]. Journal of Astronautics, 2012, 33(3): 285-290 (in Chinese). | |
22 | VOSS P B, HOLE L R, HELBLING E F, et al. Continuous in⁃situ soundings in the Arctic boundary layer: A new atmospheric measurement technique using controlled meteorological balloons[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 609-617. |
23 | JIANG Y, LV M Y, ZHU W Y, et al. A method of 3-D region controlling for scientific balloon long-endurance flight in the real wind[J]. Aerospace Science and Technology, 2020, 97: 105618. |
24 | YODER C D, GEMMER T R, MAZZOLENI A P. Modelling and performance analysis of a tether and sail-based trajectory control system for extra-terrestrial scientific balloon missions[J]. Acta Astronautica, 2019, 160: 527-537. |
25 | RAMESH S S, MA J L, LIM K M, et al. Numerical evaluation of station-keeping strategies for stratospheric balloons[J]. Aerospace Science and Technology, 2018, 80: 288-300. |
26 | JIANG Y, LV M Y, LI J. Station-keeping control design of double balloon system based on horizontal region constraints[J]. Aerospace Science and Technology, 2020, 100: 105792. |
27 | SAITO Y, AKITA D, FUKE H, et al. Properties of tandem balloons connected by extendable suspension wires[J]. Advances in Space Research, 2010, 45(4): 482-489. |
28 | STERN S A, POYNTER J, MACCALLUM T. World view stratospheric ballooning capabilities, research, and commercial applications[C]∥ 2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017. |
29 | BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82. |
30 | SCHOEBERL M R, JENSEN E, PODGLAJEN A, et al. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories[J]. Journal of Geophysical Research Atmospheres: JGR, 2017, 122(16): 8517-8524. |
31 | FRIEDRICH L S, MCDONALD A J, BODEKER G E, et al. A comparison of Loon balloon observations and stratospheric reanalysis products[J]. Atmospheric Chemistry and Physics, 2017, 17(2): 855-866. |
32 | VON EHRENFRIED M. Stratospheric balloons: Science and commerce at the edge of space[M]. Cham: Springer International Publishing, 2021. |
33 | 李智斌, 黄宛宁, 张钊, 等. 2020年临近空间科技热点回眸[J]. 科技导报, 2021, 39(1): 54-68. |
LI Z B, HUANG W N, ZHANG Z, et al. Summary of the hot spots of near space science and technology in 2020[J]. Science & Technology Review, 2021, 39(1): 54-68 (in Chinese). | |
34 | TRAN N K, HE X, ZLOTNIK D E, et al. Attitude sensing and control of a stratospheric ballon platform[C]∥ AIAA Balloon Systems (BAL) Conference. Reston: AIAA, 2013. |
35 | CANDIDO S, SINGH A, DELLE MONACHE L. Improving wind forecasts in the lower stratosphere by distilling an analog ensemble into a deep neural network[J]. Geophysical Research Letters, 2020, 47(15): e2020GL089098. |
36 | 张小达, 张鹏, 李小龙. 《标准大气与参考大气模型应用指南》介绍[J]. 航天标准化, 2010(3): 8-11. |
ZHANG X D, ZHANG P, LI X L. Introduction of application guide of standard atmosphere and reference atmosphere model[J]. Aerospace Standardization, 2010(3): 8-11 (in Chinese). | |
37 | 祝榕辰, 王生, 杨燕初, 等. 超压气球平飞阶段昼夜温度特性分析[J]. 计算机仿真, 2020, 37(11): 54-59. |
ZHU R C, WANG S, YANG Y C, et al. Analysis of day-night thermal properties of super-pressure balloon during cruising flight[J]. Computer Simulation, 2020, 37(11): 54-59 (in Chinese). | |
38 | DAI Q M, CAO L, ZHANG G G, et al. Thermal performance analysis of solar array for solar powered stratospheric airship[J]. Applied Thermal Engineering, 2020, 171: 115077. |
39 | ZHU W Y, XU Y M, DU H F, et al. Thermal performance of high-altitude solar powered scientific balloon[J]. Renewable Energy, 2019, 135: 1078-1096. |
40 | NOLL J. Determination of lift gas leakage rate for a stratospheric airship hull[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011. |
41 | YAO X F, LEI Y M, XIONG C, et al. Mechanics analysis on helium leakage of flexible composites[J]. Mechanics of Advanced Materials and Structures, 2012, 19(8): 603-612. |
42 | ZHU W Y, XU Y M, LI J, et al. Performance analysis of rotatable energy system of high-altitude airships in real wind field[J]. Aerospace Science and Technology, 2020, 98: 105689. |
43 | 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020, 41(3): 623414. |
WU J F, WANG H L, HUANG Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623414 (in Chinese). | |
44 | 高显忠, 邓小龙, 王玉杰, 等. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J/OL]. 航空学报, (2022-06-13) [2022-07-01]. doi: 10.7527/S1000-6893.2022.27265 . |
GAO X Z, DENG X L, WANG Y J, et al. Research on general planning method for energy optimal flight path of solar-powered aircraft in near space[J/OL]. Acta Aeronautica et Astronautica Sinica, (2022-06-13) [2022-07-01]. doi: 10.7527/S1000-6893.2022.27265 (in Chinese). | |
45 | 刘福才, 赵阳, 杨亦强, 等. 高空气球太阳能电池标定用太阳跟踪控制技术[J]. 航空学报, 2014, 35(11): 3137-3144. |
LIU F C, ZHAO Y, YANG Y Q, et al. Sun tracking technology for balloon flight solar cell calibration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3137-3144 (in Chinese). | |
46 | 徐国宁, 唐宇, 李兆杰, 等. 太阳电池高空气球标定关键技术研究[J]. 太阳能学报, 2021, 42(10): 94-104. |
XU G N, TANG Y, LI Z J, et al. Research on key technology of solar cell high altitude flight balloon calibration[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 94-104 (in Chinese). | |
47 | WAKEFIELD D, BOWN A. Non-linear analysis of the NASA super pressure balloons: Some detailed investigations of recent Antarctic flight balloons[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011. |
48 | 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报, 2010, 31(11): 2477-2482. |
LIU D X, FAN Y B, MA Y P, et al. Effect of helium permeability on working endurance high altitude long duration LTA vehicle[J]. Journal of Astronautics, 2010, 31(11): 2477-2482 (in Chinese). | |
49 | 刘乾石, 徐国宁, 李兆杰, 等. 长航时高空科学气球能量平衡分析与优化[J]. 太阳能学报, 2021, 42(5): 276-285. |
LIU Q S, XU G N, LI Z J, et al. Energy balance analysis and optimization of long-tern high altitude scientific balloon[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 276-285 (in Chinese). | |
50 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). |
[1] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[2] | 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 529720-529720. |
[3] | 高显忠, 邓小龙, 王玉杰, 郭正, 侯中喜. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J]. 航空学报, 2023, 44(8): 27265-027265. |
[4] | 李俊红, 靳旭红, 刘春风, 苗文博, 程晓丽. 临近空间高速飞行器微量气动力试验及计算[J]. 航空学报, 2023, 44(6): 127072-127072. |
[5] | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023, 44(3): 526510-526510. |
[6] | 崔玉红, 徐艺哲, 吕凡熹, 赵飞, 张宇佳, 孙佳濛, 左光. 临近空间高超声速飞行器武器投放影响因素[J]. 航空学报, 2023, 44(24): 128539-128539. |
[7] | 史智广, 杨玉洁, 左宗玉. 多囊体临近空间飞艇多要素耦合建模与仿真[J]. 航空学报, 2023, 44(16): 228451-228451. |
[8] | 孙佳濛, 左光, 徐艺哲, 杜若凡, 崔玉红. 临近空间高超声速飞行器武器投放方案数值模拟[J]. 航空学报, 2023, 44(13): 127808-127808. |
[9] | 陈文雪, 高长生, 荆武兴. 拦截机动目标的信赖域策略优化制导算法[J]. 航空学报, 2023, 44(11): 327596-327596. |
[10] | 林鹏, 庄福建, 曲林锋, 许阳阳, 苏亚东. 高超声速飞机尾喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43(6): 526160-526160. |
[11] | 薄钧天, 王国宏, 于洪波, 张翔宇. 临近空间伴有尾流高超声速目标检测定位算法[J]. 航空学报, 2022, 43(5): 325255-325255. |
[12] | 薄钧天, 王国宏, 于洪波, 张翔宇. 临近空间高超声速多目标检测前跟踪算法[J]. 航空学报, 2022, 43(5): 325299-325299. |
[13] | 李冠雄, 王靖宇, 王运涛. 低压储能的升浮一体飞行器总体参数研究[J]. 航空学报, 2021, 42(7): 224438-224438. |
[14] | 王大轶, 侯博文, 王炯琦, 葛东明, 李茂登, 徐超, 周海银. 航天器自主导航状态估计方法研究综述[J]. 航空学报, 2021, 42(4): 524310-524310. |
[15] | 周聪, 闫晓东, 唐硕, 吕石. 大气层内模型预测静态规划拦截中制导[J]. 航空学报, 2021, 42(11): 524912-524912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学