[1] Wang H F, Zuo D W, Wang H Y, et al. Microstructure and mechanical properties of 5554 aluminum alloy TIG welded seam. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(6): 753-757. (in Chinese) 汪洪峰, 左敦稳, 王宏宇, 等. 5554铝合金TIG焊缝组织与性能. 南京航空航天大学学报, 2010, 42(6): 753-757.[2] Ghidini T, Dalle D C. Fatigue life predictions using fracture mechanics methods. Engineering Fracture Mechanics, 2009, 76(1): 134-148.[3] Ambriz R R, Chicot D, Benseddiq N, et al. Local mechanical properties of the 6061-T6 aluminum weld using micro-traction and instrumented indentation. European Journal of Mechanics, 2011, 30(3): 307-315.[4] John R, Jata K V, Sadananda K. Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. International Journal of Fatigue, 2003, 25(9): 939-948.[5] Liljedahl C D M, Zanellato O, Fitzpatrick M E, et al. The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading. International Journal of Fatigue, 2010, 32(4): 735-743.[6] Pouget G, Reynolds A P. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. International Journal of Fatigue, 2008, 30(3): 463-472.[7] Zhang D F, Chen Y L. Corrosion damage evolvement rule of aluminum alloy under equivalent accelerated conditon. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 340-342.(in Chinese) 张丹峰, 陈跃良. 当量加速试验条件下铝合金腐蚀形态演化规律. 南京航空航天大学学报, 2010, 42(3): 340-342.[8] Alexopoulos N D, Papanikos P. Experimental and theoretical studies of corrosion-induced mechanical properties degradation of Aircraft 2024 aluminum alloy. Material Science and Engineering A, 2008, 498(1-2): 248-257.[9] Paolinelli L D, Perez T, Simison S N. The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion. Corrosion Science, 2008, 50(9): 2456-2464.[10] Burns J T, Kim S, Gangloff R P. Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu. Corrosion Science, 2010, 52(2): 498-508.[11] Frederic M, Gilbert H. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behaviour of the aluminum alloy 2024. International Journal of Fatigue, 2009, 31(11-12): 1684-1695.[12] Liu J Z, Chen B, Ye X B, et al. Fatigue and crack growth behavior of pre-corroded aluminum alloy 2024-T62 and its life prediction based on fracture mechanics. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 107-116. (in Chinese) 刘建中, 陈勃, 叶序彬, 等. 含腐蚀预损伤铝合金2024-T62的疲劳断裂行为及基于断裂力学的寿命预测. 航空学报, 2011, 32(1): 107-116.[13] Zhang Y H, Lu G Z, Chen Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 779-782. (in Chinese) 张有宏, 铝国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究. 航空学报, 2005, 26(6): 779-782.[14] United State Department of Defense. Fusion welding for aerospace applications. MIL-STD-2219, 1990.[15] Gao Y P, Liang X B, Dong L, et al. GB/T 228-2010 Metallic-materials tensile testing-part 1: method of test at room temperature. Beijing: China Standard Press, 2010: 1-25. (in Chinese) 高怡裴, 梁新帮, 董莉, 等. GB/T 228-2010 金属材料拉伸试验第1部分:室温试验方法. 北京: 中国标准出版社, 2010: 1-25.[16] Ji X C, Wang Y, Li H L. GB/T 16545-1996 Corrosion of metal and alloys-removal of corrosion products from corrosion test specimens. Beijing: China Standard Press, 1996: 253-260. (in Chinese) 纪晓春, 王云, 李慧玲. GB/T 16545-1996 金属和合金的腐蚀试样上腐蚀产物的清除. 北京: 中国标准出版社, 1996: 253-260. |