| [1] 张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007: 425-430. Zhang Junshan. High temperature deformation and fracture of materials[M]. Beijing: Science Press, 2007: 425-430. (in Chinese)[2] 尹泽勇. 航空发动机设计手册: 第18册, 叶片轮盘及主轴强度分析[M]. 北京:航空工业出版社, 2007: 807-821. Yin Zeyong. Manual for design of turbo engine: Book 18, strength analysis of turbine disk and shaft[M]. Beijing: Aviation Industry Press, 2007: 807-821. (in Chinese)[3] Ostergren W J. A damage foundation hold time and frequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing and Evaluation, 1967(4): 327-339.[4] Koh S K. Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density[J]. International Journal of Pressure Vessels and Piping, 2002, 79(12): 791-798.[5] Wang Y L. A generalized frequency modified damage function model for high temperature low cycle fatigue life prediction[J]. International Journal of Fatigue, 1997, 19(4): 345-350.[6] Goswami T. Low cycle fatigue life prediction—a new model[J]. International Journal of Fatigue, 1997, 19(2): 109-115.[7] Lee K O, Hong S G, Lee S B. A new energy-based damage parameter in life prediction of high-temperature structural materials[J]. Materials Science and Engineering: A, 2008, 496(1-2): 471-477.[8] Zhu S P, Huang H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(4): 227-237.[9] Payten W M, Dean D W, Snowden K U. A strain energy density method for the prediction of creep-fatigue damage in high temperature components[J]. Materials Science and Engineering: A, 2010, 527(7-8): 1920-1925.[10] Maurel V, Remy L, Dahmen F, et al. An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth[J]. International Journal of Fatigue, 2009, 31(5): 952-961.[11] Zhu S P, Sun R, Huang H Z, et al. A new life prediction model based on ductility exhaustion theory for high temperature low cycle fatigue of turbine disk alloys//Proceedings of the ASME International Design Engineering Technical Conference. 2010.[12] 张国栋, 苏彬. 高温低周应变疲劳的三参数幂函数能量方法研究[J]. 航空学报, 2007, 28(2): 314-318. Zhang Guodong, Su Bin. A method based on energy and three-parameter power function for low cycle fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 314-318. (in Chinese)[13] Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778.[14] 王卫国. 轮盘低循环疲劳寿命预测模型和试验评估方法研究. 南京: 南京航空航天大学能源与动力学院, 2006. Wang Weiguo. Research on prediction model for disc LCF life and experiment assessment methodology. Nanjing: College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)[15] Fan Z C, Chen X D, Chen L, et al. Fatigue-creep beha-vior of 1.25Cr0.5Mo steel at high temperature and its life prediction[J]. International Journal of Fatigue, 2007, 29(6): 1174-1183.[16] Chen L, Jiang J L, Fan Z C, et al. A new model for life prediction of fatigue-creep interaction[J]. International Journal of Fatigue, 2007, 29(4): 615-619.[17] Pineau A, Antolovich S D. High temperature fatigue of nickel-base superalloys: a review with special emphasis on deformation modes and oxidation[J]. Engineering Failure Analysis, 2009, 16(8): 2668-2697.[18] Goswami T. Low cycle fatigue-dwell effects and damage mechanism[J]. International Journal of Fatigue, 1999, 21(1): 55-76.[19] 范志超, 陈学东, 陈凌, 等. 基于延性耗竭理论的疲劳蠕变寿命预测方法[J]. 金属学报, 2006, 42(4): 415-420. Fan Zhichao, Chen Xuedong, Chen Ling, et al. Prediction method of fatigue-creep interaction life based on ductility exhaustion theory[J]. Acta Metallurgica Sinica, 2006, 42(4): 415-420. (in Chinese) |