1 |
林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.
|
|
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese).
|
2 |
吴大方, 林鹭劲, 吴文军, 等. 1 500 ℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报, 2020, 41(7): 223612.
|
|
WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1 500 ℃[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 223612 (in Chinese).
|
3 |
张力, 洪杰, 马艳红. 航空发动机转子系统建模方法和振动特性分析[J]. 北京航空航天大学学报, 2013, 39(2): 148-153, 163.
|
|
ZHANG L, HONG J, MA Y H. Modeling method and vibration characteristics of aero-engine rotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 148-153, 163 (in Chinese).
|
4 |
洪杰, 王华, 肖大为, 等. 转子支承动刚度对转子动力特性的影响分析[J]. 航空发动机, 2008, 34(1): 23-27.
|
|
HONG J, WANG H, XIAO D W, et al. Effects of dynamic stiffness of rotor bearing on rotordynamic characteristics[J]. Aeroengine, 2008, 34(1): 23-27 (in Chinese).
|
5 |
张大义, 刘烨辉, 梁智超, 等. 航空发动机双转子系统临界转速求解方法[J]. 推进技术, 2015, 36(2): 292-298.
|
|
ZHANG D Y, LIU Y H, LIANG Z C, et al. Prediction for critical speed of double spools system in aero engines[J]. Journal of Propulsion Technology, 2015, 36(2): 292-298 (in Chinese).
|
6 |
章健, 张大义, 王永锋, 等. 共用支承-转子结构系统振动耦合特性分析[J]. 北京航空航天大学学报, 2019, 45(9): 1902-1910.
|
|
ZHANG J, ZHANG D Y, WANG Y F, et al. Coupling vibration characteristics analysis of shared support-rotors system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1902-1910 (in Chinese).
|
7 |
左彦飞. 航空发动机整机系统结构振动特性分析[D]. 北京: 北京航空航天大学, 2016: 67-95.
|
|
ZUO Y F. Structural dynamic analysis of the whole aero-engine system[D]. Beijing: Beihang University, 2016: 67-95 (in Chinese).
|
8 |
王杰, 左彦飞, 江志农, 等. 支承非对称对双转子系统动力特性的影响规律[J]. 振动与冲击, 2020, 39(18): 27-33.
|
|
WANG J, ZUO Y F, JIANG Z N, et al. Effect of asymmetrical supports on the dynamic characteristics of a dual-rotor system[J]. Journal of Vibration and Shock, 2020, 39(18): 27-33 (in Chinese).
|
9 |
王杰, 左彦飞, 江志农, 等. 带中介轴承的双转子系统振动耦合作用评估[J]. 航空学报, 2021, 42(6): 224065.
|
|
WANG J, ZUO Y F, JIANG Z N, et al. Evaluation of vibration coupling effect of dual-rotor system with intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224065 (in Chinese).
|
10 |
LI T L, WANG J L, LEI S, et al. Structural characteristics of twin-screw compressor rotor based on thermal-solid coupling method[J]. Journal of Vibroengineering, 2020, 22(6): 1534-1546.
|
11 |
朱向哲, 贺威, 袁惠群. 稳态温度场对转子系统振动特性的影响[J]. 东北大学学报(自然科学版), 2008, 29(1): 113-116.
|
|
ZHU X Z, HE W, YUAN H Q. Effects of steady temperature field on vibrational characteristics of a rotor system[J]. Journal of Northeastern University (Natural Science), 2008, 29(1): 113-116 (in Chinese).
|
12 |
YU J, DU G, WANG H, et al. The influence of thermal deformation on the AMB-rotor system of HTR-PM helium circulator[J]. Applied Computational Electromagnetics Society Journal, 2019, 34(7):1102-1111.
|
13 |
GAO P, CHEN Y S, HOU L. Nonlinear thermal behaviors of the inter-shaft bearing in a dual-rotor system subjected to the dynamic load[J]. Nonlinear Dynamics, 2020, 101(1): 191-209.
|
14 |
PEIXOTO T F, ALVES D S, SILVA TUCKMANTEL F W DA, et al. Effect of thermal boundary conditions on dynamic characteristics of multi-lobed bearings[J]. Mechanism and Machine Theory, 2022, 172: 104787.
|
15 |
刘知辉, 牛军川, 贾睿昊. 热梯度环境下梁高频振动的能量流模型[J]. 航空学报, 2022, 43(5): 425336.
|
|
LIU Z H, NIU J C, JIA R H. Energy flow model for high-frequency vibration of beams in thermal-gradient environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 425336 (in Chinese).
|
16 |
李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642.
|
|
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese).
|
17 |
张婷婷, 王克明, 孙阳, 等. 温度场对双转子系统动力特性影响的分析[J]. 沈阳航空航天大学学报, 2013, 30(1): 34-38.
|
|
ZHANG T T, WANG K M, SUN Y, et al. Analysis of the effects of temperature field on dynamic characteristics of dual-rotor system[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 34-38 (in Chinese).
|
18 |
张明根, 胡丽国, 郝小龙, 等. 温度对小型涡轮泵转子临界转速影响研究[J]. 流体机械, 2019, 47(5): 13-17.
|
|
ZHANG M G, HU L G, HAO X L, et al. Study on the influence of temperature on critical speed of small turbo-pump rotor[J]. Fluid Machinery, 2019, 47(5): 13-17 (in Chinese).
|
19 |
何鹏, 刘占生, 刘镇星. 考虑杨氏模量随轴向温度分布变化的转子有限元建模方法研究[J]. 振动与冲击, 2012, 31(14): 22-26, 55.
|
|
HE P, LIU Z S, LIU Z X. Finite element modelling of rotor considering the variation of Yang’s modulus with axial temperature distribution[J]. Journal of Vibration and Shock, 2012, 31(14): 22-26, 55 (in Chinese).
|
20 |
刘少权, 张艳春, 杜兆刚, 等. 温度场对燃气轮机拉杆转子临界转速的影响[J]. 燃气轮机技术, 2011, 24(2): 20-23.
|
|
LIU S Q, ZHANG Y C, DU Z G, et al. Prediction of the influence of temperature field on the critical speeds of a rod-fastened rotor[J]. Gas Turbine Technology, 2011, 24(2): 20-23 (in Chinese).
|
21 |
LIU Z H, WANG R R, CAO F, et al. Dynamic behaviour analysis of turbocharger rotor-shaft system in thermal environment based on finite element method[J]. Shock and Vibration, 2020, 2020: 1-18.
|
22 |
翁史烈. 燃气轮机性能分析[M]. 上海: 上海交通大学出版社, 1998: 4-9.
|
|
WENG S L. Performance analysis of gas turbine[M]. Shanghai: Shanghai Jiao Tong University Press, 1998: 4-9 (in Chinese).
|
23 |
WALSH P P, FLETCHER P. Gas turbine performance[M]. 2nd ed. Malden: Blackwell Science, 2004: 235-244.
|
24 |
《中国航空材料手册》编辑委员会. 中国航空材料手册 第2卷 变形高温合金 铸造高温合金[M]. 北京: 中国标准出版社, 2001: 203-215.
|
|
Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook, Vol. 2: Deformation superalloy, cast superalloy[M]. Beijing: Standards Press of China, 2001: 203-215 (in Chinese).
|
25 |
王建军, 卿立伟, 李其汉. 旋转叶片频率转向与振型转换特性[J]. 航空动力学报, 2007, 22(1): 8-11.
|
|
WANG J J, QING L W, LI Q H. Frequency veering and mode shape interaction for rotating blades[J]. Journal of Aerospace Power, 2007, 22(1): 8-11 (in Chinese).
|