1 |
顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797.
|
|
GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797 (in Chinese).
|
2 |
吴凯文, 杨晋, 李龙, 等. 不同经编织物对预成型体定型工艺性及渗透特性的影响[J]. 航空学报, 2017, 38(10):235-246.
|
|
WU K W, YANG J, LI L, et al. Influence of different warp knitted fabrics on processability and permeability of preform[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 235-246 (in Chinese).
|
3 |
YUN M, CARELLA T, SIMACEK P, et al. Stochastic modeling of through the thickness permeability variation in a fabric and its effect on void formation during vacuum assisted resin transfer molding[J]. Composites Science and Technology, 2017, 149: 100-107.
|
4 |
AZIZ A R, ALI M A, ZENG X, et al. Transverse permeability of dry fiber preforms manufactured by automated fiber placement[J]. Composites Science and Technology, 2017, 152: 57-67.
|
5 |
LUKASZEWICZ D H J A, WARD C, POTTER K D. The engineering aspects of automated prepreg layup: History, present and future[J]. Composites Part B: Engineering, 2012, 43(3): 997-1009.
|
6 |
杭产. 空客持续推进“明日之翼”项目[N].中国航空报,2020-02-14.
|
|
HANG C. Airbus continuously promotes the “Wings of Tomorrow” project [N]. China Aviation News, 2020-02-14 (in Chinese).
|
7 |
CROFT K, LESSARD L, PASINI D, et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 484-491.
|
8 |
BICKERTON S, BUNTAIN M J, SOMASHEKAR A A. The viscoelastic compression behavior of liquid composite molding preforms[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(5): 431-444.
|
9 |
BUBLITZ D, COLIN D, DRECHSLER K. Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106718.
|
10 |
WERLEN V, RYTKA C, MICHAUD V. A numerical approach to characterize the viscoelastic behaviour of fibre beds and to evaluate the influence of strain deviations on viscoelastic parameter extraction[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106315.
|
11 |
DANZI M, SCHNEEBERGER C, ERMANNI P. A model for the time-dependent compaction response of woven fiber textiles[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 180-188.
|
12 |
CELAURO C, FECAROTTI C, PIRROTTA A, et al. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures[J]. Construction and Building Materials, 2012, 36: 458-466.
|
13 |
ZHANG Y Y, SUN Z, LI Y Q, et al. Tensile creep behavior of short-carbon-fiber reinforced polyetherimide composites[J]. Composites Part B: Engineering, 2021, 212: 108717.
|
14 |
YANG J L, ZHANG Z, SCHLARB A K, et al. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance[J]. Polymer, 2006, 47(19): 6745-6758.
|
15 |
杜虎虎, 王伟宏, 王海刚, 等. 木纤维含量对木塑复合材料蠕变特性的影响[J]. 建筑材料学报, 2015, 18(2):333-339.
|
|
DU H H, WANG W H, WANG H G, et al. Influence of wood fiber content on the creep behavior of wood fiber-plastic composite[J]. Journal of Building Materials, 2015, 18(2):333-339 (in Chinese).
|
16 |
LI R, LENG Z, PARTL M N, et al. Characterization and modelling of creep and recovery behaviour of waterborne epoxy resin modified bitumen emulsion[J]. Materials and Structures, 2021, 54(1): 1-12.
|
17 |
KELLY P A. A viscoelastic model for the compaction of fibrous materials[J]. Journal of the Textile Institute, 2011, 102(8): 689-699.
|
18 |
MARCOVICH N E, VILLAR M A. Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites[J]. Journal of Applied Polymer Science, 2003, 90(10): 2775-2784.
|
19 |
CHAE S H, ZHAO J H, EDWARDS D R, et al. Characterization of the viscoelasticity of molding compounds in the time domain[J].Journal of Electronic Materials, 2010, 39(4): 419-425.
|
20 |
HOUSHYAR S, SHANKS R A, HODZIC A. Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites[J]. Polymer Testing, 2005, 24(2): 257-264.
|
21 |
NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete[M]. London: Construction Press, 1983.
|
22 |
LAUKKANEN O V, WINTER H H. Strain accumulation in bituminous binders under repeated creep-recovery loading predicted from small-amplitude oscillatory shear (SAOS) experiments[J]. Mechanics of Time-Dependent Materials, 2018, 22(4): 499-518.
|
23 |
梅生启, 唐广, 杨斌, 等. 基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析[J]. 复合材料学报, 2020, 37(8): 2055-2064.
|
|
MEI S Q, TANG G, YANG B, et al. Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2055-2064 (in Chinese).
|