航空学报 > 2025, Vol. 46 Issue (22): 231755-231755   doi: 10.7527/S1000-6893.2025.31755

固体力学与飞行器总体设计

样本分簇增强的快速近似建模方法及应用

王悦1,2, 王志祥1,3(), 李道奎1,2, 雷勇军1,2,4   

  1. 1.国防科技大学 空天科学学院,长沙 410073
    2.空天任务智能规划与仿真湖南省重点实验室,长沙 410073
    3.国防科技大学 高超声速技术实验室,长沙 410073
    4.火箭军工程大学,西安 710025
  • 收稿日期:2025-01-02 修回日期:2025-02-10 接受日期:2025-04-08 出版日期:2025-04-17 发布日期:2025-04-17
  • 通讯作者: 王志祥 E-mail:wangzhixiang14@nudt.edu.cn
  • 基金资助:
    国家自然科学基金(52405301);湖南省自然科学基金(2024JJ6453)

A fast approximate modeling method and application for sample cluster enhancement

Yue WANG1,2, Zhixiang WANG1,3(), Daokui LI1,2, Yongjun LEI1,2,4   

  1. 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha 410073,China
    3.Hypersonic Technology Laboratory,National University of Defense Technology,Changsha 410073,China
    4.Rocket Force University of Engineering,Xi’an 710025,China
  • Received:2025-01-02 Revised:2025-02-10 Accepted:2025-04-08 Online:2025-04-17 Published:2025-04-17
  • Contact: Zhixiang WANG E-mail:wangzhixiang14@nudt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52405301);Natural Science Foundation of Hunan Province(2024JJ6453)

摘要:

为提高复合材料加筋圆柱壳后屈曲分析和优化效率,提出了一种融合样本分簇和改进K折交叉验证的增广径向基函数(ARBF)快速近似建模方法。采用K-means聚类算法确定了样本最优分簇,基于样本局部密度确定了样本的基准形状参数,各分簇均引入缩放系数自适应调整形状参数,有效兼顾了优化形状参数的效率和精度。通过样本子集建立ARBF辅助近似模型,进而建立了基于偏差-方差分解的ARBF辅助近似模型泛化性能评估准则,解决了传统K折交叉验证样本信息利用不足的难题;基于分块矩阵求逆技术推导了ARBF辅助近似模型的高阶系数矩阵快速求逆方法,提出了基于改进K折交叉验证的缩放系数优化方法,大幅降低了确定最优形状参数的计算复杂度,提升了ARBF近似建模效率和精度。数值和工程算例表明,样本最优分簇和快速交叉验证对近似建模效率和精度有显著增益,降低了建模效率对样本规模和问题维度的敏感性,且相同训练样本数量下,该方法建模精度显著优于其他典型方法,验证了该方法的有效性和先进性,具有一定的工程应用价值。

关键词: 复合材料加筋圆柱壳, 增广径向基函数近似模型, 样本分簇, K折交叉验证, 分块矩阵求逆

Abstract:

To improve the analysis and optimization efficiency of stiffened composite cylindrical shells, a novel fast modeling method for the Augmented Radial Basis Function (ARBF) approximate model is proposed by fusing sample clustering and improved K-fold cross-validation. The K-means clustering algorithm is used to determine the optimal sample clustering, and the reference shape parameters of the samples are determined based on the local density of the samples. The scaling coefficient is introduced into each cluster to adjust the shape parameters adaptively, which effectively balance the optimization efficiency and accuracy of the shape parameters. The ARBF auxiliary approximation model is established by sample subset, and then the evaluation criteria of ARBF auxiliary approximation model generalization performance is established based on bias-variance decomposition, addressing the problem of insufficient utilization of traditional K-fold cross-validation sample information. Based on the block matrix inversion technique, a fast inversion method of the high-order coefficient matrix of the ARBF auxiliary approximation model is derived, and the scaling coefficient optimization method based on the improved K-fold cross-validation is proposed, which greatly reduces the computational complexity of determining the optimal shape parameters and improves the efficiency and accuracy of ARBF approximation modeling. Numerical and engineering examples validate that the optimal sample clustering and fast cross-validation have significant contributions to the approximate modeling efficiency and accuracy, and reduce the sensitivity of modeling efficiency to sample size and problem dimension. Moreover, using the same number of training samples, the modeling accuracy of the proposed method is significantly superior to that of other typical methods. The results verifies the effectiveness, advancemen and practical engineering value of the proposed method.

Key words: stiffened composite cylindrical shell, augmented radial basis function approximation model, sample clustering, K-fold cross-validation, block matrix inversion

中图分类号: