首页 >

起落架系统的分岔特性与参数耦合影响规律

刘冲冲1,刘小川1,许勇2,李霄1,刘胜利1   

  1. 1. 中国飞机强度研究所
    2. 西北工业大学
  • 收稿日期:2025-08-31 修回日期:2025-10-13 出版日期:2025-10-17 发布日期:2025-10-17
  • 通讯作者: 刘小川

Investigation of Bifurcation Characteristics and Parameter Coupling Mechanisms in Landing Gear Systems

  • Received:2025-08-31 Revised:2025-10-13 Online:2025-10-17 Published:2025-10-17
  • Contact: XIAO CHUANLIU

摘要: 本文基于时滞轮胎动力学模型,构建了考虑轮胎侧向变形模式动态变化的起落架-轮胎耦合摆振动力学方程。通过Hopf 分岔理论分析方法,计算动力学系统全局动力学特性的多维度投影,定量揭示了不同滑跑速度下侧向弯曲刚度、扭转刚度等关键参数耦合效应对起落架系统稳定性的影响规律与作用机制。计算结果与传统轮胎模型对比表明,二者既存在一致性,又凸显了传统轮胎模型在捕捉参数耦合作用方面的局限性。采用增强的贝叶斯优化方法对起落架系统的分岔特性进行优化,系统稳定性得到显著提升。研究发现:当起落架扭转模态频率与侧向弯曲模态频率接近时,系统会产生显著的模态耦合效应,形成双稳态摆振临界边界,导致系统稳定性显著降低;起落架在低速度与高速度区间呈现出明显的稳定性差异特征;提升扭转刚度、降低轮胎侧向刚度在全速度域内均表现出显著的摆振抑制效果,可作为关键控制参数进行针对性设计与优化。

关键词: 时滞轮胎模型, 起落架摆振, 扭转刚度, 侧向弯曲刚度, 稳定性分析, hopf分岔

Abstract: Based on a delay tire dynamic model, this paper formulates coupled landing gear-tire shimmy dynamics equations, taking into account the dynamic variations in tire lateral deformation modes. Utilizing Hopf bifurcation theory, we compute the global dynamic characteristics of the system through multi-dimensional projections, quantitatively revealing the influence patterns and mechanisms of key parameters (such as lateral bending stiffness and torsional stiffness) on the stability of the landing gear system across various taxiing speeds. Comparative results with traditional tire models show both consistency and highlight their limitations in capturing parameter coupling effects. By employing an enhanced Bayesian optimization method, we optimize the bifur-cation characteristics of the landing gear system, resulting in a significant improvement in stability. The study identifies that when the torsional mode frequency of the landing gear approaches the lateral bending mode frequency, substantial modal cou-pling occurs, creating a bistable shimmy critical boundary that drastically reduces stability. Additionally, distinct stability characteristics are observed in both low and high-speed ranges. Increasing torsional stiffness and decreasing tire lateral stiffness yield notable shimmy suppression effects across the entire speed spectrum, indicating their potential as key control parameters for targeted design and optimization.

Key words: the delay tire model, landing gear shimmy, torsional stiffness, lateral bending stiffness, stability analysis, Hopf bifurcation.

中图分类号: