| [1] |
赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851.
|
|
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526851 (in Chinese).
|
| [2] |
CHAI G B, YAP C W. Coupling effects in bending, buckling and free vibration of generally laminated composite beams[J]. Composites Science and Technology, 2008, 68(7-8): 1664-1670.
|
| [3] |
COWPER G R. The shear coefficient in Timoshenko’s beam theory[J]. Journal of Applied Mechanics, 1966, 33(2): 335-340.
|
| [4] |
REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745-752.
|
| [5] |
MATSUNAGA H. A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings[J]. Composite Structures, 2004, 64(2): 161-177.
|
| [6] |
SAYYAD A S, GHUGAL Y M, NAIK N S. Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory[J]. Curved and Layered Structures, 2015, 2(1): 279-289.
|
| [7] |
MEICHE N E, TOUNSI A, ZIANE N, et al. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate[J]. International Journal of Mechanical Sciences, 2011, 53(4): 237-247.
|
| [8] |
REDDY J N. A generalization of two-dimensional theories of laminated composite plates[J]. Communications in Applied Numerical Methods, 1987, 3(3): 173-180.
|
| [9] |
LEKHNITSKII S G. Strength calculation of composite beams[J]. Vestnik inzhen i tekhnikov, 1935, 9: 137-148.
|
| [10] |
CARRERA E. Historical review of Zig-Zag theories for multilayered plates and shells[J]. Applied Mechanics Reviews, 2003, 56(3): 287.
|
| [11] |
DI SCIUVA M. An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates[J]. Journal of Applied Mechanics, 1987, 54(3): 589.
|
| [12] |
DI SCIUVA M. Multilayered anisotropic plate models with continuous interlaminar stresses[J]. Composite Structures, 1992, 22(3): 149-167.
|
| [13] |
MURAKAMI H. Laminated composite plate theory with improved in-plane responses[J]. Journal of Applied Mechanics, 1986, 53(3): 661-666.
|
| [14] |
CHO M, PARMERTER R R. Efficient higher order composite plate theory for general lamination configurations[J]. AIAA Journal, 1993, 31(7): 1299-1306.
|
| [15] |
ICARDI U. Applications of zig-zag theories to sandwich beams[J]. Mechanics of Advanced Materials and Structures, 2003, 10(1): 77-97.
|
| [16] |
TESSLER A, DISCIUVA M, GHERLONE M. Refined zigzag theory for laminated composite and sandwich plates: NASA/TP-2009-215561[R]. Washington, D.C.: NASA, 2009.
|
| [17] |
TESSLER A, DI SCIUVA M, GHERLONE M. A refined zigzag beam theory for composite and sandwich beams[J]. Journal of Composite Materials, 2009, 43(9): 1051-1081.
|
| [18] |
杨胜奇, 张永存, 刘书田. 一种准确预测层合梁结构层间剪应力的新锯齿理论[J]. 航空学报, 2019, 40(11): 223028.
|
|
YANG S Q, ZHANG Y C, LIU S T. A new zig-zag theory for accurately predicting interlaminar shear stress of laminated beam structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 223028 (in Chinese).
|
| [19] |
SI J L, CHEN W J, YI S J, et al. A new and efficient zigzag theory for laminated composite plates[J]. Composite Structures, 2023, 322: 117356.
|
| [20] |
GROH R M J, WEAVER P M. On displacement-based and mixed-variational equivalent single layer theories for modelling highly heterogeneous laminated beams[J]. International Journal of Solids and Structures, 2015, 59: 147-170.
|
| [21] |
PAGANO N J. Exact solutions for composite laminates in cylindrical bending[J]. Journal of Composite Materials, 1969, 3(3): 398-411.
|