| [1] |
FAN J X, ZHANG L, WEI S S, et al. A review of additive manufacturing of metamaterials and developing trends[J]. Materials Today, 2021, 50: 303-328.
|
| [2] |
REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
|
| [3] |
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
|
|
REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687 (in Chinese).
|
| [4] |
XIN X Z, LIU L W, LIU Y J, et al. 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties[J]. Advanced Functional Materials, 2020, 30(43): 2004226.
|
| [5] |
ZHANG Y, REN X, HAN D, et al. Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption[J]. International Journal of Impact Engineering, 2022, 164: 104193.
|
| [6] |
MA M H, WU Y D, YU Y L, et al. Ballistic resistance of biomimetic ceramic composite armor: An integrated analysis of impact dynamics and structural response[J]. Finite Elements in Analysis and Design, 2024, 240: 104209.
|
| [7] |
KIM W, BANG J, YANG Y, et al. Highly stretchable and conductive kirigami-like double-layer electrodes for motion-insensitive wearable electronics[J]. Composites Part B: Engineering, 2024, 283: 111655.
|
| [8] |
LI X, WANG Q S, YANG Z Y, et al. Novel auxetic structures with enhanced mechanical properties[J]. Extreme Mechanics Letters, 2019, 27: 59-65.
|
| [9] |
ROGERS J A, SOMEYA T, HUANG Y G. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603-1607.
|
| [10] |
ZHOU W X, YAO S S, WANG H Y, et al. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes[J]. ACS Nano, 2020, 14(5): 5798-5805.
|
| [11] |
BAO Z N, CHEN X D. Flexible and stretchable devices[J]. Advanced Materials, 2016, 28(22): 4177-4179.
|
| [12] |
MUTH J T, VOGT D M, TRUBY R L, et al. 3D printing: Embedded 3D printing of strain sensors within highly stretchable elastomers (adv. mater. 36/2014)[J]. Advanced Materials, 2014, 26(36): 6202.
|
| [13] |
GIBSON L J, ASHBY M F, SCHAJER G S,et al. The mechanics of two-dimensional cellular materials[J] Proceedings of the Royal Society of London, 1982,382(1782): 43-59.
|
| [14] |
GRIMA J N, EVANS K E. Auxetic behavior from rotating squares[J]. Journal of Materials Science Letters, 2000, 19(17): 1563-1565.
|
| [15] |
GRIMA J N, EVANS K E. Auxetic behavior from rotating triangles[J]. Journal of Materials Science, 2006, 41(10): 3193-3196.
|
| [16] |
LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects[J]. Journal of Materials Science, 1991, 26(9): 2287-2292.
|
| [17] |
ROSSITER J, TAKASHIMA K, SCARPA F, et al. Shape memory polymer hexachiral auxetic structures with tunable stiffness[J]. Smart Materials and Structures, 2014, 23(4): 045007.
|
| [18] |
GRIMA J N, GATT R. Perforated sheets exhibiting negative Poisson’s ratios[J]. Advanced Engineering Materials, 2010, 12(6): 460-464.
|
| [19] |
TANG Y C, YIN J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility[J]. Extreme Mechanics Letters, 2017, 12: 77-85.
|
| [20] |
PARK J, WANG S D, LI M, et al. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors[J]. Nature Communications, 2012, 3: 916.
|
| [21] |
HUANG S H, LIU P, MOKASDAR A, et al. Additive manufacturing and its societal impact: A literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5): 1191-1203.
|
| [22] |
NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
|
| [23] |
党乐, 张梦雨, 成艳娜, 等. 3D打印技术在复合材料中的应用与发展[J]科技创新与应用, 2022, 12(24): 166-169.
|
|
DANG L, ZHANG M Y, CHENG Y N,et al. The application and development of 3D Printing Technology in Composite Materials[J]. Technology Innovation and Application, 2022, 12(24): 166-169 (in Chinese).
|
| [24] |
BEHARIC A, RODRIGUEZ EGUI R, YANG L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs[J]. Materials & Design, 2018, 145: 122-134.
|
| [25] |
YUAN S Q, SHEN F, BAI J M, et al. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization[J]. Materials & Design, 2017, 120: 317-327.
|
| [26] |
LI B, LIU H, ZHANG Q, et al. Crushing behavior and energy absorption of a bio-inspired bi-directional corrugated lattice under quasi-static compression load[J]. Composite Structures, 2022, 286: 115315.
|