| [1] |
SONG C K, YE F, CHENG L F, et al. Long-term ceramic matrix composite for aeroengine[J]. Journal of Advanced Ceramics, 2022, 11(9): 1343-1374.
|
| [2] |
LI L B. Modeling strength degradation of fiber-reinforced ceramic-matrix composites under cyclic loading at room and elevated temperatures[J]. Materials Science and Engineering: A, 2017, 695: 221-229.
|
| [3] |
孙坤, 王洪斌, 张树林, 等. 基于热响应的陶瓷基复合材料火焰筒热冲击试验[J]. 航空发动机, 2021, 47(3): 86-90.
|
|
SUN K, WANG H B, ZHANG S L, et al. Thermal shock test of ceramic matrix composites liner based on thermal response[J]. Aeroengine, 2021, 47(3): 86-90 (in Chinese).
|
| [4] |
刘鑫, 乔逸飞, 董少静, 等. 陶瓷基复合材料力学性能计算及涡轮导叶宏观响应分析方法[J]. 航空发动机, 2021, 47(6): 85-90.
|
|
LIU X, QIAO Y F, DONG S J, et al. Mechanical property calculation of ceramic matrix composites and macro response analysis method of turbine guide vane[J]. Aeroengine, 2021, 47(6): 85-90 (in Chinese).
|
| [5] |
SCHNEIDER C W. Acoustic fatigue of aircraft structures at elevated temperatures[C]∥Aeroacoustics Conference, 1973.
|
| [6] |
VAICAITIS R, ARNOLD R. Nonlinear response and sonic fatigue of metal and composite panels: AIAA-1990-3938[R]. Reston: AIAA, 1990.
|
| [7] |
NG C F, CLEVENSON S A. High-intensity acoustic tests of a thermally stressed plate[J]. Journal of Aircraft, 1991, 28(4): 275-281.
|
| [8] |
TZONG G T, LIGUORE S L. Verification studies on hypersonic structure thermal/acoustic response and life prediction methods[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
|
| [9] |
LEE H B, KIM Y N, CHOI I J, et al. Nonlinear dynamic responses of shear-deformable composite panels under combined supersonic aerodynamic, thermal, and random acoustic loads[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(3): 707-722.
|
| [10] |
GO E S, KIM M G, MOON Y S, et al. Experimental study on dynamic behavior of a titanium specimen using the thermal-acoustic fatigue apparatus[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2020, 48(2): 127-134.
|
| [11] |
SADAGOPAN A, HUANG D N, HANQUIST K. Impact of high-temperature effects on the aerothermoelastic behavior of composite skin panels in hypersonic flow[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
| [12] |
ALMEIDA R S M, CHEN S A, BESSER B, et al. Fatigue behavior and damage analysis of PIP C/SiC composite[J]. Journal of the European Ceramic Society, 2022, 42(13): 5391-5398.
|
| [13] |
韩红梅, 张秀莲, 李贺军, 等. 炭/炭复合材料高温力学行为研究[J]. 新型炭材料, 2003, 18(1): 20-24.
|
|
HAN H M, ZHANG X L, LI H J, et al. Study on mechanical behavior of carbon/carbon composites at high temperature[J]. New Carbon Materials, 2003, 18(1): 20-24 (in Chinese).
|
| [14] |
吴振强, 刘宝瑞, 贾洲侠, 等. 强噪声激励下C/SiC复合材料壁板动态响应与失效分析[J]. 复合材料学报, 2019, 36(5): 1254-1262.
|
|
WU Z Q, LIU B R, JIA Z X, et al. Dynamic responses and failure analysis of C/SiC composite plates subjected high intensity acoustic loads[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1254-1262 (in Chinese).
|
| [15] |
吴振强, 张正平, 李海波, 等. C/SiC壁板热噪声复合环境动态响应试验研究[J]. 实验力学, 2015, 30(6): 741-748.
|
|
WU Z Q, ZHANG Z P, LI H B, et al. Experimental investigation on C/SiC plate dynamic response in a thermal and acoustic combined environment[J]. Journal of Experimental Mechanics, 2015, 30(6): 741-748 (in Chinese).
|
| [16] |
林华刚. 超声速气流中复合材料结构的气动弹性颤振研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LIN H G. Aeroelastic flutter study of composite structures in supersonic air[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
| [17] |
代吉祥, 沙建军, 王首豪, 等. 纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响[J]. 航空学报, 2015, 36(5): 1704-1712.
|
|
DAI J X, SHA J J, WANG S H, et al. Influence of fiber surface state on microstructure and phase composition of C/C-SiC composites[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1704-1712 (in Chinese).
|
| [18] |
李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020, 41(8): 877-886.
|
|
LI R Y, WANG T H. Thermo-mechanical buckling analysis of thin plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886 (in Chinese).
|
| [19] |
赵锐, 于开平, 崔乃刚. 时变热环境下复合材料夹层板结构动力学响应分析[J]. 振动工程学报, 2018, 31(2): 329-335.
|
|
ZHAO R, YU K P, CUI N G. Vibration response analysis of a composite sandwich plate under a time-varying thermal environment[J]. Journal of Vibration Engineering, 2018, 31(2): 329-335 (in Chinese).
|
| [20] |
赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6): 136-161.
|
|
ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 136-161 (in Chinese).
|
| [21] |
陶永强, 关成启, 金亮, 等. 高量级宽带噪声等效加载方法[J]. 航空学报, 2022, 43(12): 627037.
|
|
TAO Y Q, GUAN C Q, JIN L, et al. Equivalent loading method for high-level noise under broadband condition[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 627037 (in Chinese).
|
| [22] |
沙云东, 王建, 赵奉同, 等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报, 2017, 32(11): 2659-2671.
|
|
SHA Y D, WANG J, ZHAO F T, et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power, 2017, 32(11): 2659-2671 (in Chinese).
|
| [23] |
沙云东, 朱付磊, 赵奉同, 等. 热声载荷下薄壁板行波管疲劳分析与试验研究[J]. 推进技术, 2019, 40(8): 1876-1886.
|
|
SHA Y D, ZHU F L, ZHAO F T, et al. Fatigue analysis and experimental research for thin-walled plates under thermoacoustic loading in traveling wave tube[J]. Journal of Propulsion Technology, 2019, 40(8): 1876-1886 (in Chinese).
|
| [24] |
师艳, 刘晗, 赵彤彤, 等. 陶瓷基复合材料反应熔渗过程多场建模与仿真[J]. 航空学报, 2025, 46(3): 319-335.
|
|
SHI Y, LIU H, ZHAO T T, et al. Multi-field modeling and simulation of reactive infiltration process of ceramic matrix composites[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 319-335 (in Chinese).
|
| [25] |
吴峰宇. 高温环境下复合材料薄壁结构声疲劳性能计算与试验研究[D]. 沈阳: 沈阳航空航天大学, 2023.
|
|
WU F Y. Calculation and experimental study on acoustic fatigue performance of thin-walled composite structures under high-temperature environments [D]. Shenyang: Shenyang Aerospace University, 2023 (in Chinese).
|
| [26] |
艾思泽. 热-声-流-固耦合作用下薄壁结构疲劳寿命预估[D]. 沈阳: 沈阳航空航天大学, 2019.
|
|
AI S Z. Fatigue life prediction of thin-walled structures under the coupling of heat, sound, flow and solid [D]. Shenyang: Shenyang Aerospace University, 2019 (in Chinese).
|
| [27] |
沙云东, 艾思泽, 张家铭. 金属薄壁结构在高速流动下热声响应特性分析方法[J]. 机械设计与制造, 2023(3): 165-170, 174.
|
|
SHA Y D, AI S Z, ZHANG J M. Thermal acoustic response analysis method for metal thin-walled structures under high-speed flow[J]. Machinery Design & Manufacture, 2023(3): 165-170, 174 (in Chinese).
|