航空学报 > 2025, Vol. 46 Issue (21): 532353-532353   doi: 10.7527/S1000-6893.2025.32353

中国飞机强度研究所建所 60 周年专刊

高速气流下C/SiC薄板热声耦合响应特性计算与分析

骆丽1,2, 孙远驰1, 邹学锋2, 赵奉同1()   

  1. 1.沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室,沈阳 110136
    2.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
  • 收稿日期:2025-06-03 修回日期:2025-06-30 接受日期:2025-08-11 出版日期:2025-08-19 发布日期:2025-08-18
  • 通讯作者: 赵奉同 E-mail:zhao_ft@buaa.edu.cn
  • 基金资助:
    强度与结构完整性全国重点实验室开放基金(ASSIKFJJ202303004);辽宁省教育厅项目(JYTMS20230247)

Calculation and analysis of thermo-acoustic coupling response characteristics of C/SiC thin plate with high-velocity airflow

Li LUO1,2, Yuanchi SUN1, Xuefeng ZOU2, Fengtong ZHAO1()   

  1. 1.Key Laboratory of Advanced Test Technology for Aviation Propulsion System of Liaoning Province,Shenyang Aerospace University,Shenyang 110136,China
    2.National Key Laboratory of Structural Integrity and Strength,China Aircraft Strength Research Institute,Xi’an 710065,China
  • Received:2025-06-03 Revised:2025-06-30 Accepted:2025-08-11 Online:2025-08-19 Published:2025-08-18
  • Contact: Fengtong ZHAO E-mail:zhao_ft@buaa.edu.cn
  • Supported by:
    National Key Laboratory of Structural Integrity and Strength Open Fund(ASSIKFJJ202303004);Project of the Department of Education of Liaoning Province(JYTMS20230247)

摘要:

高速气流下的复合材料薄壁结构热声问题是航空航天领域长期关注的核心问题之一,采用数值仿真计算和热声激励试验相结合的方法,开展薄板的热声激励试验,获取薄板的固有频率、加速度频域响应和单向应变结果。建立薄板结构大挠度控制方程,采用耦合的有限元与边界元(FEM/BEM)理论,联合声场振动系数矩阵与结构控制方程可得到结构声压频率响应函数,以此反映耦合效应。计算与试验工况相同的薄板结构的固有频率和单向应变值,通过与试验结果对比,验证了热声耦合计算方法和模型的有效性,进而完成了高速气流下CMCs(Ceramic Matrix Composites)薄板结构的热声耦合响应特性计算和规律分析。通过对结果的分析表明:在热-流-声多场耦合下,流速主控总压力,最大压力集中入口;温度协同热基线与流梯度调控薄板温度分布。温度主导应力分布与幅值,改变危险点位置;应力、应变响应随流速先减后增,极值集中高温高流速区,体现结构的正交异性。热声载荷、流载荷分控低、高频响应,温度驱动应力功率谱密度(PSD)峰值迁移,高温、高流速时,热、流载荷成为频域主导。

关键词: 高速气流, C/SiC薄板, 热声耦合, 动响应, 热声激励试验

Abstract:

The thermo-acoustic problem of thin-walled composite structures under high-velocity gas flow is one of the core issues that have long been of concern in the aerospace field. In this paper, a combination of numerical simulation calculation and thermo-acoustic excitation tests is adopted to conduct thermo-acoustic excitation tests on thin plates for obtaining the natural frequency, acceleration frequency domain response and unidirectional strain results of the thin plates. The control equation for large deflection of thin plate structures is established. By applying the coupled Finite Element Method/Boundary Element Method (FEM/BEM) theory and combining the sound field vibration coefficient matrix with the structural control equation, the frequency response function of the structural sound pressure can be obtained, thereby reflecting the coupling effect. The natural frequency and unidirectional strain values of the thin plate structure are calculated under the same test conditions. By comparing them with the test results, we verify the validity of the thermo-acoustic coupling calculation method and model, and then complete the calculation and law analysis of the thermo-acoustic coupling response characteristics of the CMCs(Ceramic Matrix Composites) thin plate structure under high-velocity gas flow. The analysis of the results shows that under the multi-field coupling of heat, flow and sound, the flow velocity controls the total pressure, and the maximum pressure is concentrated at the inlet. The temperature collaborates with the thermal baseline and flow gradient to regulate the temperature distribution of thin plates. Temperature dominates the stress distribution and amplitude, and changes the location of dangerous points. The stress and strain responses first decrease and then increase with the flow rate, and the extreme values are concentrated in the high-temperature and high-flow rate zone, reflecting the orthogonality of the structure. Thermo-acoustic loads and flow loads separately control low- and high-frequency responses. Temperature drives the peak migration of stress Power Spectral Density (PSD). At high temperatures and high flow rates, thermal and flow loads become dominant in the frequency domain.

Key words: high-velocity airflow, C/SiC thin plate, thermo-acoustic coupling, dynamic response, thermo-acoustic excitation test

中图分类号: