首页 >

无网格VDQ法分析非规则薄板热-振耦合特性

王立刚,徐润泽,刘志鹏,黄宇超,王可   

  1. 哈尔滨工程大学
  • 收稿日期:2025-05-16 修回日期:2025-09-09 出版日期:2025-09-10 发布日期:2025-09-10
  • 通讯作者: 王立刚

Meshless VDQ method for thermo-vibrational analysis of irregular thin plates

  • Received:2025-05-16 Revised:2025-09-09 Online:2025-09-10 Published:2025-09-10
  • Contact: Ligang Wang

摘要: 针对具有非规则几何形状的薄板结构,提出了一种无网格变分微分求积方法(Variational Differential Quadrature Method,VDQ),通过融合微分再生核插值技术与径向基函数近似法,构建了适用于非结构化节点的微分算子;同时基于Voronoi图理论获得了自适应积分算子,实现了非规则计算域的精确数值积分。通过对方形板、圆角缺损板、方角缺损板、含圆洞板及含方洞板等典型边界形状的单层板与功能梯度板(Functionally Graded Materials, FGM)开展热致振动特性研究,验证了该方法的有效性。数值结果表明:与传统网格方法相比,无网格 VDQ 方法在减少了节点数量且仍能保持工程精度要求;热致振动分析中,两类薄板的最大挠度均呈现显著递减趋势:方形板>圆角缺损板>方角缺损板>圆孔板>方孔板,揭示了非规则几何形状边界对薄板结构热振动响应的影响规律。本研究为航空航天、精密机械等领域的复杂薄板结构热振动分析提供了高效可靠的数值工具。

关键词: 非规则边界薄板, 变分微分求积法, Voronoi图, 无网格法, 热振动

Abstract: A meshless variational differential quadrature (VDQ) method is proposed for plates with irregular geometric configurations. By integrating differential reproducing kernel interpolation technique and radial basis function approximation, a differential operator suitable for unstructured nodes is constructed. Meanwhile, an adaptive integral operator based on Voronoi diagram theory is developed to achieve numerical integration over irregular computational domains. The effectiveness of this method is validated through systematic investigations of thermally driven vibrations in both homogeneous single-layer plates and functionally graded plates with five typical boundary shape, including square plates, round-corner-defective plates, square-corner-defective plates, circular-hole plates, and square-hole plates. Numerical results demonstrate that compared with traditional grid-based methods, the meshless VDQ method reduces the number of nodes while maintaining engineering accuracy requirements. In thermal-vibration analysis, the maxi-mum deflection magnitudes for both type plates exhibit a order: intact > round-corner-defective > square-corner-defective > circular-hole > square-hole, revealing the influence mechanism of irregular geometric boundaries on thermal-vibration responses of thin plate structures. This research provides an efficient and reliable numerical tool for thermal-vibration analysis of complex thin plate structures in aerospace, precision machinery, and other engineering fields.

Key words: irregular boundary thin plates, variational differential quadrature method (VDQ), Voronoi diagram, meshless method, thermal vibration

中图分类号: