航空学报 > 2025, Vol. 46 Issue (21): 532372-532372   doi: 10.7527/S1000-6893.2025.32372

中国飞机强度研究所建所 60 周年专刊

碳纤维编织复合材料激光烧蚀多场耦合建模

刘清漪1, 杨旭2,3, 张宇4, 严鹏3,4(), 陈彦飞5, 闫楚良3   

  1. 1.北京航空航天大学 无人系统研究院,北京 100191
    2.北京强度环境研究所,北京 100076
    3.北京航空航天大学 航空科学与工程学院,北京 100191
    4.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
    5.北京理工大学 先进结构技术研究院,北京 100081
  • 收稿日期:2025-06-04 修回日期:2025-06-24 接受日期:2025-07-28 出版日期:2025-08-15 发布日期:2025-08-11
  • 通讯作者: 严鹏 E-mail:yanpeng@buaa.edu.cn
  • 基金资助:
    强度与结构完整性全国重点实验室开放基金(ASSIKFJJ202302002)

Multi-physics coupling modeling of laser ablation process of carbon fiber woven composites

Qingyi LIU1, Xu YANG2,3, Yu ZHANG4, Peng YAN3,4(), Yanfei CHEN5, Chuliang YAN3   

  1. 1.Institute ot Unmanned System,Beihang University,Beijing 100191,China
    2.Beijing Institute of Structure and Environment Engineering,Beijing 100076,China
    3.School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China
    4.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
    5.Institute of Advanced Structure Technology,Beijing Institute of Technology,Beijing 100081,China
  • Received:2025-06-04 Revised:2025-06-24 Accepted:2025-07-28 Online:2025-08-15 Published:2025-08-11
  • Contact: Peng YAN E-mail:yanpeng@buaa.edu.cn
  • Supported by:
    Open Fund of National Key Laboratory of Strength and Structural Integrity(ASSIKFJJ202302002)

摘要:

针对碳纤维编织复合材料的激光毁伤过程,建立了多场耦合多尺度模型。多场耦合模型包括热学、力学和化学这3个方面;多尺度模型涉及纤维、树脂及其化学反应产物所在的微观尺度,纤维束、基体、界面层所在的细观尺度以及层合板所在的宏观尺度。采用多场交替耦合分析流程,结合有限元方法和数值积分法实现了对该模型控制方程的求解。以包含5层的编织复合材料层合板激光烧蚀实验为例,对于层合板毁伤形貌和背板中心温升历程,模型预测结果与实验结果符合较好,验证了模型的有效性。模拟不同气体环境下的烧蚀效果表明,烧蚀环境中的氧气浓度越高,碳纤维和热解残碳的氧化反应越剧烈,复合材料的毁伤效应就越显著。因此,为充分发挥碳纤维的优良高温力学性能,抑制氧化是提升碳纤维复合材料抗激光毁伤能力的可行途径。该模型与求解方法能够有效预测不同激光辐照工况下的材料损伤阈值,促进复合材料激光损伤机理的深入研究,为航空结构抗激光防护设计提供新的理论分析工具。

关键词: 碳纤维复合材料, 激光烧蚀, 多场耦合, 多尺度模型

Abstract:

A multi-physics coupling and multi-scale model is established to describe laser damage process of carbon fiber composites. The multi-physics coupling model includes three aspects: Thermal, mechanical and chemical model; the multi-scale model involves the micro-scale of fiber, resin and their chemical reaction products, the meso-scale of fiber yarn, matrix and interface layer, and the macro-scale of laminates. A multi-physics alternating coupling analysis process is established, and finite element method and numerical integration method are combined to solve the governing equations of the model. Taking the laser ablation experiment of a woven composite laminate with 5 plies as an example, the model predictions demonstrate good agreement with the experimental results for both the damage morphology of the laminate and the temperature rise history at the center of the back surface, validating the effectiveness of the model. Simulations of ablation effects in different gaseous environments indicate that higher oxygen concentrations in the ablation environment lead to more intense oxidation reactions of the carbon fibers and pyrolytic carbon residue, resulting in more significant damage to the composite material. Thus, to fully exploit the excellent high-temperature mechanical properties of carbon fibers, suppressing oxidation represents a viable approach for enhancing the laser damage resistance of carbon fiber composites. This model and solution method can effectively predict the material damage threshold under various laser irradiation parameters, facilitating in-depth research on the laser damage mechanisms of composite materials. It thereby provides a new theoretical analysis methodology for the laser-resistant protection design of aerospace structures.

Key words: carbon fiber composites, laser ablation, multi-physics coupling, multi-scale model

中图分类号: