白春玉1,2,3(
), 赵子豪2, 刘小川1,2, 张宇1,2, 郭亚周1,2
收稿日期:2025-06-16
修回日期:2025-07-13
接受日期:2025-09-01
出版日期:2025-09-19
发布日期:2025-09-10
通讯作者:
白春玉
E-mail:baichunyu2006@163.com
基金资助:
Chunyu BAI1,2,3(
), Zihao ZHAO2, Xiaochuan LIU1,2, Yu ZHANG1,2, Yazhou GUO1,2
Received:2025-06-16
Revised:2025-07-13
Accepted:2025-09-01
Online:2025-09-19
Published:2025-09-10
Contact:
Chunyu BAI
E-mail:baichunyu2006@163.com
Supported by:摘要:
在极端天气条件下,冰雹冲击飞机雷达罩、机翼等部位易造成结构损伤甚至失效,危及航空运营安全,是飞机结构设计不可忽视的焦点问题。分析了冰雹冲击飞机结构的相关规章条款要求,对比研究了冰雹冲击相较鸟撞等外来物冲击飞机结构的异同,并从冰雹的形成机理及动态本构表征、实验室环境下冰雹冲击结构试验、冰雹冲击数值仿真及损伤评价等方面出发,阐释了冰雹冲击航空结构的技术研究概况及典型进展,最后,对航空结构抗冰雹冲击技术的发展进行了展望。
中图分类号:
白春玉, 赵子豪, 刘小川, 张宇, 郭亚周. 飞机结构抗冰雹冲击特性研究进展与展望[J]. 航空学报, 2025, 46(21): 532424.
Chunyu BAI, Zihao ZHAO, Xiaochuan LIU, Yu ZHANG, Yazhou GUO. Research progress and prospects in hail impact resistance of aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532424.
表1
外来物冲击对比
| 外来物 | 外来物特性 | 冲击特性 | 发生场景及损伤情况 |
|---|---|---|---|
| 冰雹 | 多点冲击,离散密集分布 | 低速为硬物冲击, 高速为软体冲击 | 飞机地面停机状态遭受低速冲击,结构产生肉眼不可见损伤; 飞机飞行状态遭受高速冲击,产生可见损伤 |
| 飞鸟 | 多为单次冲击,偶有 鸟群冲击 | 软体冲击 | 飞机飞行状态遭受冲击,产生破坏性损伤,需按照破损安全设计 |
| 消费级无人机 | 多为单次冲击 | 硬物冲击 | 飞机飞行状态遭受冲击,结构产生破坏性损伤,可能存在锂电池爆炸等后续效应 |
| 维修工具 | 多为单次冲击 | 硬物冲击 | 飞机地面停机状态工具跌落冲击,产生不可见损伤或塑性变形,一般结构可维修 |
| 跑道碎石 | 多为单次冲击 | 硬物冲击 | 飞机地面滑行状态,冲击发动机口盖等结构,造成结构凹坑或 功能受限 |
| [1] | EASA. Notice of proposed amendment: Turbine engine certification specifications in icing conditions [S]. Cologne : European Aviation Safety Agency, 2011. |
| [2] | 国家质量监督检验检疫总局 中国国家标准化管理委员会. 冰雹等级: [S]. 北京: 中国标准出版社, 2012. |
| Standardization Administration of the People’s Republic of China. Grade of hail: [S]. Beijing: Standards Press of China, 2012 (in Chinese) . | |
| [3] | 中国人民解放军空军装备部综合计划部. 军用飞机结构强度规范第8部分: 振动和航空声耐久性: [S]. 北京: 总装备部军标出版发行部,2008. |
| The Comprehensive Planning Department of the Air Force Equipment Department of the People’s Liberation Army of China. Military aircraft structural strength specification Part 8: Vibration and aeroacoustic durability: [S]. Beijing: Military Standard Publishing and Distribution Department, General Armament Department, 2008 (in Chinese). | |
| [4] | 中国人民解放军空军装备部综合计划部. 军用飞机结构强度规范 第9部分:地面试验: [S].北京:总装备部军标出版发行部,2008. |
| The Comprehensive Planning Department of the Air Force Equipment Department of the People’s Liberation Army of China. Military aircraft structural strength specification-Part 9: Ground tests: [S]. Beijing: Military Standard Publishing and Distribution Department, General Armament Department, 2008 (in Chinese). | |
| [5] | 中国人民解放军空军装备部综合计划部. 军用飞机结构强度规范第14部分: 复合材料结构: [S].北京: 总装备部军标出版发行部, 2008. |
| The Comprehensive Planning Department of the Air Force Equipment Department of the People’s Liberation Army of China. Military aircraft structural strength specifications-Part 14: Composite materials structures: [S]. Beijing: Military Standard Publishing and Distribution Department, General Armament Department, 2008 (in Chinese). | |
| [6] | 建筑材料工业技术监督研究中心. 雷达天线罩用纤维增强塑料泡沫夹层结构件规范: [S].北京:总装备部军标出版发行部,2018. |
| Construction Materials Industry Technical Supervision Research Center. Specification for fiberglass reinforced plastic foam sandwich structural components used in radar antenna radomes: [S]. Beijing: Military Standard Publishing and Distribution Department, General Armament Department, 2018 (in Chinese). | |
| [7] | 航空航天工业部. 机载火控雷达罩通用规范: [S].北京:国防科工委军标出版发行部,1994. |
| Aerospace Industry Department. General specification for airborne fire control radar radomes: [S]. Beijing: Military Standard Publishing and Distribution Department, Commission for Science, Technology and Industry for National Defense, 1994 (in Chinese). | |
| [8] | 中国民用航空局. 中国民用航空规章 第25部 运输类飞机适航标准:CCAR-25-R4 [S].北京:中国民用航空局,2011. |
| Civil Aviation Administration of China. Civil aviation regulations of China Part 25: Airworthiness standards for transport category aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
| [9] | 中国民用航空局. 中国民用航空规章 第33部 航空发动机适航规定:CCAR-33-R2 [S]. 北京:中国民用航空局,2011. |
| Civil Aviation Administration of China. Civil aviation regulations of China Part 33: Specifications for airframe engine certification:CCAR-33-R2 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
| [10] | ASTM International. Standard test method for hail impact resistance of aerospace transparent enclosures: [S]. West Conshohocken: ASTM International, 2010 . |
| [11] | 郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验[J]. 实验力学, 2020, 35(1): 167-173. |
| GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact[J]. Journal of Experimental Mechanics, 2020, 35(1): 167-173 (in Chinese). | |
| [12] | 张宇, 王彬文, 白春玉, 等. 典型航空器结构抗冰雹、仿真鸟弹冲击特性及其对比研究[J]. 振动与冲击, 2021, 40(18): 307-314. |
| ZHANG Y, WANG B W, BAI C Y, et al. Anti-impact characteristics and contrastive study of typical aircraft structures against hail and simulated bird projectile[J]. Journal of Vibration and Shock, 2021, 40(18): 307-314 (in Chinese). | |
| [13] | 孙才, 叶永健. 飞机抗雹击设计与检查分析[J]. 航空维修与工程, 2024(9): 70-75. |
| SUN C, YE Y J. Analysis on design and inspection of aircraft anti-hail strike[J]. Aviation Maintenance & Engineering, 2024(9): 70-75 (in Chinese). | |
| [14] | HOBBS P V, CHANG S, LOCATELLI J D. The dimensions and aggregation of ice crystals in natural clouds[J]. Journal of Geophysical Research, 1974, 79(15): 2199-2206. |
| [15] | KNIGHT N C. Measurement and interpretation of hailstone density and terminal velocity[J]. Journal of the Atmospheric Sciences, 1983, 40(6): 1510-1516. |
| [16] | 葛鑫, 张丽芬, 刘振侠. 冷冻温度对适航测试冰雹力学性能影响[J]. 航空动力学报, 2020, 35(8): 1744-1751. |
| GE X, ZHANG L F, LIU Z X. Effect of freezing temperature on mechanical properties of hail in airworthiness test[J]. Journal of Aerospace Power, 2020, 35(8): 1744-1751 (in Chinese). | |
| [17] | 王计真, 刘小川. 棉花纤维增强冰弹对复合材料层合板冰撞动响应的影响[J]. 复合材料学报, 2018, 35(12): 3298-3303. |
| WANG J Z, LIU X C. Effect of cotton fibers reinforced hail on impact dynamic behavior of composite panels[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3298-3303 (in Chinese). | |
| [18] | 莫袁鸣. 金属-复合材料双层壁结构冰撞击响应与损伤研究[D]. 南京: 南京航空航天大学, 2019. |
| MO Y M. Study on ice impact response and damage of metal-composite double wall structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
| [19] | DORRIS J F. A plasticity model for the crushing of ice[M]∥Ice-Structure Interaction. Berlin: Springer, 1991: 311-337. |
| [20] | 张丽芬, 葛鑫, 刘振侠. 人工制备冰雹的力学性能试验研究[J]. 航空学报, 2021, 42(2): 224255. |
| ZHANG L F, GE X, LIU Z X. Experimental study on mechanical properties of artificial hail[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224255 (in Chinese). | |
| [21] | JONES S J. High strain-rate compression tests on ice[J]. The Journal of Physical Chemistry B, 1997, 101(32): 6099-6101. |
| [22] | KIM H, KEUNE J N. Compressive strength of ice at impact strain rates[J]. Journal of Materials Science, 2007, 42(8): 2802-2806. |
| [23] | 汪洋, 李玉龙, 刘传雄. 利用SHPB测定高应变率下冰的动态力学行为[J]. 爆炸与冲击, 2011, 31(2): 215-219. |
| WANG Y, LI Y L, LIU C X. Dynamic mechanical behaviors of ice at high strain rates[J]. Explosion and Shock Waves, 2011, 31(2): 215-219 (in Chinese). | |
| [24] | 李尚昆, 冯晓伟, 谢若泽, 等. 高应变率下纯水冰和杂质冰的动态力学行为[J]. 爆炸与冲击, 2019, 39(9): 76-83. |
| LI S K, FENG X W, XIE R Z, et al. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates[J]. Explosion and Shock Waves, 2019, 39(9): 76-83 (in Chinese). | |
| [25] | 李达诚. 冰弹撞击纤维增强层合板响应及材料参数反演方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
| LI D C. Research on responses of fiber reinforced laminates subjected to ice projectile impact and inverse methods of material parameters[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
| [26] | GE Y J, BAI C Y, LIU X C, et al. Compressive mechanical property of artificial hail under intermediate strain rates[C]∥2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. Singapore: Springer Nature Singapore, 2024: 1344-1356. |
| [27] | KIM H, KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 38: 1278-1288. |
| [28] | KIM H. The damage resistance of composite structures to high-velocity ice impacts and their tolerance to impact damage[D]. Santa Barbara: University of California, 1998. |
| [29] | 韩飞听,薛澄岐,尤志芳. 航空飞行器冰雹冲击实验技术研究[J]. 电子机械工程, 2007, 23(6): 8-11. |
| HAN F T, XUE C Q, YOU Z F. Technical study of hailstone impact test on aerocraft[J]. Electro-Mechanical Engineering, 2007, 23(6): 8-11 (in Chinese). | |
| [30] | MCNAUGHTON I I, CHISMAN S W. A study of hail impact at high speed on light alloy plates[R]. 1940. |
| [31] | DOOGE D, SINGH S, MASIULANIEC K, et al. Experimental assessment of airframe damage due to impacting ice[C]∥31st Aerospace Sciences Meeting. Reston:AIAA, 1993. |
| [32] | JIN F, ZHAO Z H, LIU L L, et al. Multi-scale prediction method for ice impact resistance of 3D braided composites based on surface-inner cell model[J]. Composite Structures, 2025, 363: 119142. |
| [33] | ZHU X Y, FU X Q, LIU L L, et al. Damage mechanism of composite laminates under multiple ice impacts at high velocity[J]. International Journal of Impact Engineering, 2022, 168: 104296. |
| [34] | 赵浩川, 冯晓伟, 刘瑶璐, 等. 典型冰雹撞击载荷作用下T800碳纤维板的损伤特性[J]. 爆炸与冲击, 2025, 45(7): 74-87. |
| ZHAO H C, FENG X W, LIU Y L, et al. Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads[J]. Explosion and Shock Waves, 2025, 45(7): 74-87 (in Chinese). | |
| [35] | ZHANG H W, HE R, HOU B, et al. Artificial hail ice impact damage of laminated composite T-joint with stitching reinforcement[J]. Composite Structures, 2021, 278: 114714. |
| [36] | SONG Z H, LE J, WHISLER D, et al. Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact[J]. International Journal of Impact Engineering, 2018, 122: 439-450. |
| [37] | ZHANG C, FANG X, CURIEL-SOSA J L, et al. Damage in hybrid corrugated core sandwich structures under high velocity hail ice impact: A numerical study[J]. Defence Technology, 2023, 27: 217-236. |
| [38] | 沈庆阳, 何凌川, 黎方娟, 等. 风扇叶片冰撞仿真方法与试验[J]. 航空动力学报, 2024, 39(8): 262-271. |
| SHEN Q Y, HE L C, LI F J, et al. Simulation method and experiment of ice impact on fan blades[J]. Journal of Aerospace Power, 2024, 39(8): 262-271 (in Chinese). | |
| [39] | 侯亮. 航空发动机风扇叶片冰撞击数值仿真与验证[D]. 上海: 上海交通大学, 2017 : 73. |
| HOU L. Numerical simulation and verification of ice impacts on aero-engine fan blade[D]. Shanghai: Shanghai Jiao Tong University, 2017 : 73 (in Chinese). | |
| [40] | 崔博,张清,牛坤. 涡扇发动机吞雹实验[J]. 沈阳航空航天大学学报, 2024, 41 (3): 21-29. |
| CUI B, ZHANG Q, NIU K. Hailstone ingestion test of turbofan engine[J]. Journal of Shenyang Aerospace University,2024, 41 (3): 21-29 (in Chinese). | |
| [41] | 崔博, 张清, 牛坤. 涡扇发动机吞雹试验方案设计[J]. 沈阳航空航天大学学报, 2024, 41(2): 30-36. |
| CUI B, ZHANG Q, NIU K. Design of hailstone ingestion test scheme of turbofan engine[J]. Journal of Shenyang Aerospace University, 2024, 41(2): 30-36 (in Chinese). | |
| [42] | CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures, 2006, 43(25-26): 7820-7839. |
| [43] | PERNAS-SÁNCHEZ J, PEDROCHE D A, VARAS D, et al. Numerical modeling of ice behavior under high velocity impacts[J]. International Journal of Solids and Structures, 2012, 49(14): 1919-1927. |
| [44] | PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: Application to composite structures[J]. Materials & Design, 2018, 141: 350-360. |
| [45] | TIPPMANN J D. Development of a strain rate sensitive ice material model for hail ice impact simulation[D]. San Diego : University of California, 2011. |
| [46] | 孟卓, 孙秦. 冰雹的数值模拟方法初探[J]. 航空计算技术, 2009, 39(1): 22-26. |
| MENG Z, SUN Q. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique, 2009, 39(1): 22-26 (in Chinese). | |
| [47] | CUI Q H, YANG J. Evaluation of numerical simulation methods and ice material models for intermediate-velocity hail impact simulation[J]. Engineering Structures, 2021, 244: 112831. |
| [48] | 张晓琪. 冰弹撞击碳纤维/双马来酰亚胺的毁伤特性研究[D]. 沈阳: 沈阳理工大学, 2021. |
| ZHANG X Q. Damage characteristics of carbon fiber/bismaleimide impacted by ice projectile[D]. Shenyang: Shenyang Ligong University, 2021 (in Chinese). | |
| [49] | 廖光兰. 冰高速冲击作用下复合材料层合板的动态响应及损伤研究[D]. 南京: 南京航空航天大学, 2018. |
| LIAO G L. The dynamic response and damage research of laminates according to the high velocity ice impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| [50] | 王计真. 复合材料层合板抗冰雹冲击性能研究[J]. 兵工学报, 2017, 38(): 89-95. |
| WANG J Z. Research on anti-hailstone impact behavior of laminated composite panel[J]. Acta Armamentarii, 2017, 38(Sup 1): 89-95 (in Chinese). | |
| [51] | ZHOU Y, XUE B, GUO Y X, et al. Mechanical responses of CFRP/PVC foam sandwich plate impacted by hailstone[J]. International Journal of Impact Engineering, 2023, 178: 104631. |
| [52] | SONG Z H, LUONG S, WHISLER D, et al. Honeycomb core failure mechanism of CFRP/Nomex sandwich panel under multi-angle impact of hail ice[J]. International Journal of Impact Engineering, 2021, 150: 103817. |
| [53] | LIU X, QU J, MAO J Z, et al. Mechanical responses and damage characteristics of the high-velocity impact of ice projectiles on foam sandwich structure[J]. International Journal of Impact Engineering, 2024, 191: 104994. |
| [54] | 张笑宇, 徐绯, 张玉林, 等. 复合材料蜂窝夹芯板冰雹冲击及多次冲击数值研究[J]. 航空科学技术, 2021, 32(12): 74-83. |
| ZHANG X Y, XU F, ZHANG Y L, et al. Numerical study on single and repeated impact of hail on composite honeycomb sandwich panels[J]. Aeronautical Science & Technology, 2021, 32(12): 74-83 (in Chinese). | |
| [55] | 刘洋, 王富生, 岳珠峰. 冰雹冲击复合材料层合板失效模式分析与数值模拟[J]. 振动与冲击, 2011, 30(9): 150-154. |
| LIU Y, WANG F S, YUE Z F. Failure model analysis and simulation of laminated composite plate under hailstone impacting[J]. Journal of Vibration and Shock, 2011, 30(9): 150-154 (in Chinese). | |
| [56] | 汪洋, 李玉龙. 冰雹冲击复合材料层合板仿真研究[J]. 振动与冲击, 2015, 34(2): 187-190, 203. |
| WANG Y, LI Y L. Modeling of high velocity hailstone impact onto composite material panel[J]. Journal of Vibration and Shock, 2015, 34(2): 187-190, 203 (in Chinese). | |
| [57] | 韩登安, 徐丹, 叶仁传, 等. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J]. 高压物理学报, 2022, 36(4): 166-174. |
| HAN D A, XU D, YE R C, et al. Analysis on damage of double-helicoidal carbon fiber reinforced polymer bionic structure inspired by coelacanth scales under hail load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 166-174 (in Chinese). | |
| [58] | LIU K, LIU J L, WANG Z G. A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism[J]. Engineering Fracture Mechanics, 2020, 239: 107282. |
| [59] | 张超, 方鑫, 刘建春. 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707. |
| ZHANG C, FANG X, LIU J C. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707 (in Chinese). | |
| [60] | 王俊儒. 冰弹撞击CFRP复合材料的毁伤特性研究[D]. 沈阳: 沈阳理工大学, 2020: 95. |
| WANG J R. Study on the damage characteristics of CFRP composites impacted by ice projectile[D]. Shenyang: Shenyang Ligong University, 2020: 95 (in Chinese). | |
| [61] | WANG J R, XIE W H, YI F J, et al. Numerical simulation on fracture mechanisms of CFRP with barely visible impact damage by hail impact[J]. Composite Structures, 2023, 305: 116499. |
| [62] | ZHANG X Q, LIU X, YAO X H. The FEM analysis on the damage of wing leading edge under hail impact[J]. Advanced Materials Research, 2012, 460: 330-333. |
| [63] | 左志成, 夏全忠, 张有, 等. 航空发动机风扇叶片吞冰损伤数值模拟方法[J]. 飞机设计, 2022, 42(5): 45-49. |
| ZUO Z C, XIA Q Z, ZHANG Y, et al. Numerical simulation method of ice swallowing damage of aeroengine fan blade[J]. Aircraft Design, 2022, 42(5): 45-49 (in Chinese). | |
| [64] | 黄宗峥, 赵勇铭, 李坚, 等. 压气机叶片冰雹连续撞击损伤数值模拟研究[C]∥第十八届全国非线性振动暨第十五届全国非线性动力学和运动稳定性学术会议(NVND2021)摘要集. 2021: 239. |
| HUANG Z Z, ZHAO Y M, LI J, et al. Numerical simulation on continuous hail impact damage of compressor blades [C]∥Abstracts of the 18th National Conference on Nonlinear Vibration and the 15th National Conference on Nonlinear dynamic and Motion Stability. 2021: 239 (in Chinese). | |
| [65] | 张海洋, 杜少辉, 任磊. 航空发动机风扇叶片冰雹撞击仿真[J]. 航空发动机, 2021, 47(1): 42-46. |
| ZHANG H Y, DU S H, REN L. Simulation study on hail impact of aeroengine fan blade[J]. Aeroengine, 2021, 47(1): 42-46 (in Chinese). |
| [1] | 徐建宇, 周莉, 王占学, 是介, 史毫. 基于快速逐线计算模型的高超声速羽流红外辐射计算方法[J]. 航空学报, 2025, 46(8): 630778-630778. |
| [2] | 郑建军, 王孟孟, 牧彬, 魏莎. 基于弹性阻尼的全机疲劳试验约束点动态载荷抑制方法[J]. 航空学报, 2025, 46(21): 532283-532283. |
| [3] | 郭润杰, 鲁龙坤, 周子康, 王生楠. 内聚力模型在飞机金属薄壁结构断裂模拟中的应用进展[J]. 航空学报, 2025, 46(21): 532330-532330. |
| [4] | 施英杰, 刘斌超, 鲁嵩嵩, 陈亮, 尚海, 鲍蕊. 融合试验-仿真标定数据的机翼应变载荷关系神经网络模型[J]. 航空学报, 2025, 46(19): 530921-530921. |
| [5] | 代定强, 周轩, 董雷霆, 孙侠生. 数字工程与数字孪生在航空疲劳与结构完整性领域的研究进展与展望[J]. 航空学报, 2025, 46(19): 531022-531022. |
| [6] | 惠旭龙, 刘小川, 白春玉, 韩鹤朝, 张欣玥, 李肖成, 薛璞, 牟让科, 杨先锋. 民机机身框段和全机坠撞响应对比[J]. 航空学报, 2025, 46(15): 231597-231597. |
| [7] | 刘小川, 惠旭龙, 张欣玥, 白春玉, 闫亚斌, 李肖成, 牟让科. 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024, 45(5): 529664-529664. |
| [8] | 曾旭, 邓德双, 杨红娟, 杨正岩, 马书义, 杨雷, 武湛君. 航空结构低速冲击监测技术研究进展[J]. 航空学报, 2024, 45(23): 30368-030368. |
| [9] | 李周仪, 刘浩然, 任腾飞, 刘骁骁, 王弘起. 碳纳米管树脂复合薄膜的抗横向高速冲击行为[J]. 航空学报, 2024, 45(22): 430239-430239. |
| [10] | 王昕, 季海波, 李振, 李秉洋, 章琪, 张瑞, 徐翔, 孟晗, 王鹏飞, 卢天健. 仿生螺旋结构纤维增强复合材料力学性能研究进展[J]. 航空学报, 2024, 45(19): 29987-029987. |
| [11] | 魏士博, 舒洪基, 张晓琼, 赵婷婷, 王涛, 王志华, 黄庆学. 薄层碳纤维/不锈钢极薄带纤维金属层板的高速冲击性能[J]. 航空学报, 2024, 45(14): 429420-429420. |
| [12] | 郝振洋, 张凤婷, 杨健, 曹鑫. 并行独立控制策略下消振电力作动器系统[J]. 航空学报, 2024, 45(13): 329573-329573. |
| [13] | 付佳伟, 杨泽斐, 蔡亚辉, 聂祥樊, 齐乐华. 基于高速冲击异质惯性场的金属各向异性动态力学属性虚场表征法[J]. 航空学报, 2024, 45(10): 229221-229221. |
| [14] | 聂祥樊, 李阳, 王亚洲, 万全红, 何卫锋. 飞机结构激光冲击强化研究进展与展望[J]. 航空学报, 2023, 44(24): 28595-028595. |
| [15] | 刘思华, 王占莹, 李利剑, 张敏弟. 头型对射弹高速入水稳定性的影响[J]. 航空学报, 2023, 44(21): 528437-528437. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

