航空学报 > 2025, Vol. 46 Issue (21): 532365-532365   doi: 10.7527/S1000-6893.2025.32365

中国飞机强度研究所建所 60 周年专刊

基于ISMA-Stacking集成建模和贝叶斯融合的全机结构试验可靠性评估

冯蕴雯1,2, 崔宇航1,2, 贺谦3,4, 薛小锋1,2(), 陆俊5   

  1. 1.西北工业大学 航空学院,西安 710072
    2.西北工业大学 飞行器基础布局全国重点实验室,西安 710072
    3.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710068
    4.中国飞机强度研究所 全尺寸飞机结构静力/疲劳航空科技重点实验室,西安 710068
    5.上海航空工业(集团)有限公司 标准化部,上海 200232
  • 收稿日期:2025-06-03 修回日期:2025-06-17 接受日期:2025-07-11 出版日期:2025-07-28 发布日期:2025-07-18
  • 通讯作者: 薛小锋 E-mail:xuexiaofeng@nwpu.edu.cn
  • 基金资助:
    航空科学基金(20230009053004)

Reliability evaluation of full-scale structural test based on ISMA-Stacking ensemble modeling and Bayesian fusion

Yunwen FENG1,2, Yuhang CUI1,2, Qian HE3,4, Xiaofeng XUE1,2(), Jun LU5   

  1. 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Northwestern Polytechnical University,Xi’an 710072,China
    3.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute,Xi’an 710068,China
    4.Key Laboratory of Aviation Science and Technology on Full Scale Aircraft Structure Static and Fatigue Strength,Aircraft Strength Research Institute,Xi’an 710068,China
    5.Standardization Department,COMAC Shanghai Aviation Industrial(Group)Co. ,Ltd,Shanghai 200232,China
  • Received:2025-06-03 Revised:2025-06-17 Accepted:2025-07-11 Online:2025-07-28 Published:2025-07-18
  • Contact: Xiaofeng XUE E-mail:xuexiaofeng@nwpu.edu.cn
  • Supported by:
    Aerospace Science Foundation of China(20230009053004)

摘要:

针对全机结构试验(FSST)高载工况下样本量有限导致其可靠性评估不准确问题,提出了一种代理模型与贝叶斯融合的FSST可靠性评估方法,该方法基于集成代理建模和数据融合思想,首先结合历史试验数据,采用Stacking集成代理模型构建施加载荷分布先验模型,通过贝叶斯理论实现施加载荷不确定性量化,其次结合现场试验数据,采用Stacking集成代理模型构建约束点载荷误差预测模型,通过Monte Carlo仿真实现约束点载荷误差不确定性量化,最后采用Copula函数实现多约束点载荷误差失效的FSST可靠性评估。为提高模型预测精度,引入融合佳点集和自适应柯西高斯变异策略的改进黏菌算法(ISMA)对Stacking集成代理模型进行参数同步优化,提出了一种改进黏菌算法优化的Stacking集成建模方法(ISMA-Stacking)。通过某型FSST可靠性评估案例验证所提研究方法的工程适用性,结果表明:所提方法具有较高的预测精度及可靠性评估精度,与其他方法相比,施加载荷标准差预测模型和90%和100%加载级数下约束点载荷误差预测模型的平均绝对误差(MAE)指标分别降低了42.90%、50.87%和54.29%,90%和100%加载级数下可靠性评估精度分别高达99.87%和99.77%,所提方法可为全机结构试验可靠性评估提供理论和技术支撑。

关键词: 全机结构试验, 可靠性评估, 不确定性量化, 集成代理模型, 贝叶斯, 数据融合

Abstract:

To address the issue of inaccurate reliability assessment in Full-Scale Structural Tests (FSST) under high-load conditions due to a limited sample size, a reliability assessment method integrating a surrogate model with Bayesian theory is proposed. First, based on the historical test data, the Stacking ensemble surrogate model is used to construct a prior model of the applied load distribution, and the applied load uncertainty is quantified through Bayesian theory. Then, combined with the field test data, the Stacking ensemble surrogate model is used to construct the constraint points load error prediction model, and the uncertainty of the constraint points load error is quantified through Monte Carlo simulation. Finally, the Copula function is used to achieve the reliability assessment of FSST with multiple constraint points load error failures. To enhance the predictive accuracy of the model, an Improved Slime Mould Algorithm (ISMA), which incorporates a good point set and adaptive Cauchy-Gaussian variation strategy, is introduced to optimize the parameters of the Stacking integrated surrogate model synchronously, and an Improved Slime Mould Algorithm optimized Stacking ensemble modeling method (ISMA-Stacking) is proposed. The proposed method is applied to a certain type of FSST reliability assessment case, and the results show that compared with other methods, the Mean Absolute Error (MAE) of the applied load standard deviation prediction model and constraint points load error prediction models under 90% and 100% loading levels are reduced by 42.90%, 50.87% and 54.29%, respectively, and the accuracy of the reliability assessment under the 90% and 100% loading levels are as high as 99.87% and 99.77%, respectively. Therefore, the proposed method can provide theoretical and technical support for the reliability assessment of FSST.

Key words: full-scale structural test, reliability evaluation, uncertainty quantification, ensemble surrogate model, Bayesian, data fusion

中图分类号: