冯蕴雯1,2, 崔宇航1,2, 贺谦3,4, 薛小锋1,2(
), 陆俊5
收稿日期:2025-06-03
修回日期:2025-06-17
接受日期:2025-07-11
出版日期:2025-07-28
发布日期:2025-07-18
通讯作者:
薛小锋
E-mail:xuexiaofeng@nwpu.edu.cn
基金资助:
Yunwen FENG1,2, Yuhang CUI1,2, Qian HE3,4, Xiaofeng XUE1,2(
), Jun LU5
Received:2025-06-03
Revised:2025-06-17
Accepted:2025-07-11
Online:2025-07-28
Published:2025-07-18
Contact:
Xiaofeng XUE
E-mail:xuexiaofeng@nwpu.edu.cn
Supported by:摘要:
针对全机结构试验(FSST)高载工况下样本量有限导致其可靠性评估不准确问题,提出了一种代理模型与贝叶斯融合的FSST可靠性评估方法,该方法基于集成代理建模和数据融合思想,首先结合历史试验数据,采用Stacking集成代理模型构建施加载荷分布先验模型,通过贝叶斯理论实现施加载荷不确定性量化,其次结合现场试验数据,采用Stacking集成代理模型构建约束点载荷误差预测模型,通过Monte Carlo仿真实现约束点载荷误差不确定性量化,最后采用Copula函数实现多约束点载荷误差失效的FSST可靠性评估。为提高模型预测精度,引入融合佳点集和自适应柯西高斯变异策略的改进黏菌算法(ISMA)对Stacking集成代理模型进行参数同步优化,提出了一种改进黏菌算法优化的Stacking集成建模方法(ISMA-Stacking)。通过某型FSST可靠性评估案例验证所提研究方法的工程适用性,结果表明:所提方法具有较高的预测精度及可靠性评估精度,与其他方法相比,施加载荷标准差预测模型和90%和100%加载级数下约束点载荷误差预测模型的平均绝对误差(MAE)指标分别降低了42.90%、50.87%和54.29%,90%和100%加载级数下可靠性评估精度分别高达99.87%和99.77%,所提方法可为全机结构试验可靠性评估提供理论和技术支撑。
中图分类号:
冯蕴雯, 崔宇航, 贺谦, 薛小锋, 陆俊. 基于ISMA-Stacking集成建模和贝叶斯融合的全机结构试验可靠性评估[J]. 航空学报, 2025, 46(21): 532365.
Yunwen FENG, Yuhang CUI, Qian HE, Xiaofeng XUE, Jun LU. Reliability evaluation of full-scale structural test based on ISMA-Stacking ensemble modeling and Bayesian fusion[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532365.
表5
载荷谱
加载 级数/% | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | 1 000 | 1 000 | 1 500 | 2 000 | 1 000 | 1 500 | 2 000 | 5 167 | 3 333 | 1 500 | 34 000 | 34 000 |
| 20 | 2 000 | 2 000 | 3 000 | 4 000 | 2 000 | 3 000 | 4 000 | 10 333 | 6 667 | 3 000 | 34 000 | 34 000 |
| 30 | 3 000 | 3 000 | 4 500 | 6 000 | 3 000 | 4 500 | 6 000 | 15 500 | 10 000 | 4 500 | 34 000 | 34 000 |
| 40 | 4 000 | 4 000 | 6 000 | 8 000 | 4 000 | 6 000 | 8 000 | 20 667 | 13 333 | 6 000 | 34 000 | 34 000 |
| 50 | 5 000 | 5 000 | 7 500 | 10 000 | 5 000 | 7 500 | 10 000 | 25 833 | 16 667 | 7 500 | 34 000 | 34 000 |
| 60 | 6 000 | 6 000 | 9 000 | 12 000 | 6 000 | 9 000 | 12 000 | 31 000 | 20 000 | 9 000 | 34 000 | 34 000 |
| 70 | 7 000 | 7 000 | 10 500 | 14 000 | 7 000 | 10 500 | 14 000 | 36 167 | 23 333 | 10 500 | 34 000 | 34 000 |
| 80 | 8 000 | 8 000 | 12 000 | 16 000 | 8 000 | 12 000 | 16 000 | 41 333 | 26 667 | 12 000 | 34 000 | 34 000 |
| 90 | 9 000 | 9 000 | 13 500 | 18 000 | 9 000 | 13 500 | 18 000 | 46 500 | 30 000 | 13 500 | 34 000 | 34 000 |
| 100 | 10 000 | 10 000 | 15 000 | 20 000 | 10 000 | 15 000 | 20 000 | 51 667 | 33 333 | 15 000 | 34 000 | 34 000 |
表11
90%加载级数下约束点载荷误差建模参数分布特征
| 变量 | 分布类型 | 均值 | 标准差 | 变量 | 分布类型 | 均值 | 标准差 |
|---|---|---|---|---|---|---|---|
| F1 | 正态分布 | 8 997.28 | 12.54 | x2 | 正态分布 | 4 572.88 | 15.52 |
| F2 | 正态分布 | 9 001.65 | 11.95 | y2 | 正态分布 | 17 128.13 | 5.00 |
| F3 | 正态分布 | 13 493.89 | 10.62 | x3 | 正态分布 | 3 043.74 | 9.69 |
| F4 | 正态分布 | 13 498.90 | 12.28 | y3 | 正态分布 | 9 648.91 | 2.09 |
| F5 | 正态分布 | 8 997.32 | 10.70 | x4 | 正态分布 | 2 092.27 | 1.07 |
| F6 | 正态分布 | 13 494.52 | 11.48 | y4 | 正态分布 | 1 973.98 | 0.09 |
| F7 | 正态分布 | 13 498.54 | 12.26 | x5 | 正态分布 | 4 577.97 | 17.44 |
| F8 | 正态分布 | 46 486.02 | 11.18 | y5 | 正态分布 | -17 125.99 | 5.13 |
| F9 | 正态分布 | 29 993.37 | 12.20 | x6 | 正态分布 | 3 041.40 | 9.04 |
| F10 | 正态分布 | 13 496.88 | 10.69 | y6 | 正态分布 | -9 648.54 | 2.04 |
| F11 | 正态分布 | 33 989.77 | 11.88 | x7 | 正态分布 | 2 092.01 | 0.92 |
| F12 | 正态分布 | 33 990.43 | 12.11 | y7 | 正态分布 | -1 974.01 | 0.08 |
表12
100%加载级数下约束点载荷误差建模参数分布特征
| 变量 | 分布类型 | 均值 | 标准差 | 变量 | 分布类型 | 均值 | 标准差 |
|---|---|---|---|---|---|---|---|
| F1 | 正态分布 | 9 997.99 | 11.32 | x2 | 正态分布 | 4 861.79 | 18.62 |
| F2 | 正态分布 | 9 996.85 | 11.85 | y2 | 正态分布 | 17 184.60 | 5.69 |
| F3 | 正态分布 | 14 998.54 | 12.39 | x3 | 正态分布 | 3 155.45 | 8.88 |
| F4 | 正态分布 | 14 994.06 | 11.35 | y3 | 正态分布 | 9 660.68 | 1.93 |
| F5 | 正态分布 | 9 997.87 | 12.01 | x4 | 正态分布 | 2 102.89 | 0.95 |
| F6 | 正态分布 | 14 995.22 | 11.46 | y4 | 正态分布 | 1 974.05 | 0.09 |
| F7 | 正态分布 | 14 998.66 | 12.05 | x5 | 正态分布 | 4 868.70 | 21.24 |
| F8 | 正态分布 | 51 664.9 | 11.84 | y5 | 正态分布 | -17 183.04 | 4.86 |
| F9 | 正态分布 | 33 334.67 | 12.11 | x6 | 正态分布 | 3 161.80 | 8.83 |
| F10 | 正态分布 | 14 998.6 | 11.15 | y6 | 正态分布 | -9 660.46 | 2.18 |
| F11 | 正态分布 | 34 000.99 | 12.07 | x7 | 正态分布 | 2 102.97 | 1.07 |
| F12 | 正态分布 | 33 995.68 | 12.36 | y7 | 正态分布 | -1 974.01 | 0.11 |
| [1] | 王彬文, 王育鹏. 飞机强度试验[M]. 北京: 航空工业出版社, 2021: 601. |
| WANG B W, WANG Y P. Aircraft strength test[M]. Beijing: Aviation Industry Press, 2021: 601 (in Chinese). | |
| [2] | 中国人民解放军总装备部. 军用飞机结构强度规范 第9部分:地面试验: [S]. 北京: 中国人民解放军总装备部, 2008. |
| General Equipment Department of Chinese People’S Liberation Army. Military airplane structural strength specification. Part 9: Ground tests: [S]. Beijing: General Equipment Department of Chinese People’s Liberation Army, 2008 (in Chinese). | |
| [3] | 中国民用航空局. 中国民用航空规章—第25部—运输类飞机适航标准: CCAR25-R4 [S]. 北京: 民用航空局政策法规司, 2016. |
| China Civil Aviation Administration. China civil aviation regulations-part 25-airworthiness standards for transport categories of aircraft: CCAR25-R4 [S]. Beijing: Department of Policy and Law, Civil Aviation Administration, 2016 (in Chinese). | |
| [4] | MAHER S, GRAHAME L, DUNTZ A. Airframe full scale static test guidance for part 25 certification[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
| [5] | SHCHERBAN K S, SURNACHEV A A, LIMONIN M V, et al. Combined static and fatigue tests of the full-scale structure of a transport aircraft[M]∥ICAF 2019-Structural Integrity in the Age of Additive Manufacturing. Cham: Springer International Publishing, 2019: 736-746. |
| [6] | 王彬文, 聂小华, 万春华, 等. 全机静强度虚拟试验技术研究及应用[J]. 航空学报, 2022, 43(6): 526273. |
| WANG B W, NIE X H, WAN C H, et al. Research and application of virtual test technology for static strength of full scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526273 (in Chinese). | |
| [7] | 王鑫涛, 杜星. 飞机结构强度试验应急载荷限定系统[J]. 航空学报, 2020, 41(2): 223332. |
| WANG X T, DU X. Emergency load limited system for aircraft structural strength test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223332 (in Chinese). | |
| [8] | 刘冰. 大型飞机全机静力试验静定支持与约束技术及其应用[J]. 科学技术与工程, 2019, 19(11): 286-291. |
| LIU B. Research and application of statically determinate support and restraint technology for static test on large aircraft[J]. Science Technology and Engineering, 2019, 19(11): 286-291 (in Chinese). | |
| [9] | 王鑫涛, 夏龙, 刘兴科. 全机结构试验起落架位移补偿加载技术研究[J]. 机床与液压, 2021, 49(8): 55-59. |
| WANG X T, XIA L, LIU X K. Research on landing gear displacement compensation loading technology of the whole structural test[J]. Machine Tool & Hydraulics, 2021, 49(8): 55-59 (in Chinese). | |
| [10] | 郑建军, 唐吉运, 王彬文. C919飞机全机静力试验技术[J]. 航空学报, 2019, 40(1): 522364. |
| ZHENG J J, TANG J Y, WANG B W. Static test technology for C919 full-scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522364 (in Chinese). | |
| [11] | 杨鹏飞, 夏峰, 刘兴科. 起落架支持差动约束技术的研究与应用[J]. 工程与试验, 2020, 60(1): 94-95. |
| YANG P F, XIA F, LIU X K. Research and application of differential restraint technology for landing gear support[J]. Engineering & Test, 2020, 60(1): 94-95 (in Chinese). | |
| [12] | 覃湘桂, 徐维民, 刘海峰, 等. 大变形条件下机翼法向载荷的随动加载技术[J]. 南京航空航天大学学报, 2018, 50(5): 640-644. |
| QIN X G, XU W M, LIU H F, et al. Tracking loading technology of wing’s normal force under large deformation condition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(5): 640-644 (in Chinese). | |
| [13] | 王高利, 唐吉运. 全尺寸飞机结构试验约束点载荷误差分析及优化[J]. 工程与试验, 2014, 54(2): 42-46. |
| WANG G L, TANG J Y. Error analysis & optimization for constraint point load of full scale aircraft test[J]. Engineering & Test, 2014, 54(2): 42-46 (in Chinese). | |
| [14] | ZHANG Z W, JIAO Z H, LI Y J, et al. Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions[J]. Reliability Engineering & System Safety, 2024, 251: 110362. |
| [15] | XIAO X Q, LI C S, HE H X, et al. Rotating machinery fault diagnosis method based on multi-level fusion framework of multi-sensor information[J]. Information Fusion, 2025, 113: 102621. |
| [16] | LIANG Q W, YANG C, HU S S, et al. Reliability evaluation method of torpedo loading based on zero-failure data[J]. Ocean Engineering, 2023, 278: 114431. |
| [17] | TENG D, FENG Y W, CHEN J Y, et al. Intelligent vectorial surrogate modeling framework for multi-objective reliability estimation of aerospace engineering structural systems[J]. Chinese Journal of Aeronautics, 2024, 37(12): 156-173. |
| [18] | LIU J Q, FENG Y W, LU C, et al. Operational reliability assessment of complex mechanical systems with multiple failure modes: An adaptive decomposition-synchronous-coordination approach[J]. Reliability Engineering & System Safety, 2025, 253: 110494. |
| [19] | HUANG C, BU S Q, FEI C W, et al. Reliability assessment for aeroengine blisks under low cycle fatigue with ensemble generalized constraint neural network[J]. IEEE Transactions on Reliability, 2024, 73(2): 922-936. |
| [20] | 张帆, 丛玮, 田润操, 等. 基于双层变权的异构数据融合及可靠性分析[J]. 航空学报, 2024, 45(22): 230297. |
| ZHANG F, CONG W, TIAN R C, et al. Heterogeneous data fusion and reliability analysis based on two-layer variable weights[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 230297 (in Chinese). | |
| [21] | ZHANG X G, CHEN W, WANG H W, et al. A novel multi-stage precision reliability assessment method for mechanical system by Bayesian fusion[J]. Computers & Industrial Engineering, 2025, 200: 110744. |
| [22] | RENGANATHAN S A, HARADA K, MAVRIS D N. Aerodynamic data fusion toward the digital twin paradigm[J]. AIAA Journal, 2020, 58(9): 3902-3918. |
| [23] | TIAN R, ZHANG X F, LIU X W. Identification modeling of ship manoeuvring motion based on ISSA-SVR[J]. Ocean Engineering, 2024, 313: 119364. |
| [24] | LUO C Q, ZHU S P, KESHTEGAR B, et al. An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis[J]. Reliability Engineering & System Safety, 2023, 237: 109377. |
| [25] | LI Y, MU D, WU H Q, et al. Derivation of marine water quality criteria for copper based on artificial neural network model[J]. Environmental Pollution, 2024, 363: 125172. |
| [26] | ZHANG Y M, LI J X, FEI L Y, et al. Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network[J]. Energy, 2023, 268: 126701. |
| [27] | KOUNLAVONG K, SADIK L, KEAWSAWASVONG S, et al. Novel hybrid XGBoost-based soft computing models for predicting penetration resistance of buried pipelines in cohesive soils[J]. Ocean Engineering, 2024, 311: 118948. |
| [28] | MEGAHED K. Prediction and reliability analysis of shear strength of RC deep beams[J]. Scientific Reports, 2024, 14(1): 14590. |
| [29] | YIN J N, MEDELLÍN-AZUARA J, ESCRIVA-BOU A, et al. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change[J]. Science of the Total Environment, 2021, 769: 144715. |
| [30] | 祝玉珊, 王晓玲, 崔博, 等. 坝基灌浆量预测ISSA-Stacking集成学习代理模型研究[J]. 天津大学学报(自然科学与工程技术版), 2024, 57(2): 174-185. |
| ZHU Y S, WANG X L, CUI B, et al. Research on an ISSA-stacking ensemble learning surrogate model of dam foundation grouting volume prediction[J]. Journal of Tianjin University (Science and Technology), 2024, 57(2): 174-185 (in Chinese). | |
| [31] | KE Q, LI M C, REN Q B, et al. Rockfill material uncertainty inversion analysis of concrete-faced rockfill dams using stacking ensemble strategy and Jaya optimizer[J]. Water Science and Engineering, 2023, 16(4): 419-428. |
| [32] | LI Z N, LI Q L, LIANG J H, et al. Stacking ensemble surrogate modeling method based on decomposed- coordinated strategy for structural low-cycle fatigue life reliability estimation[J]. Reliability Engineering & System Safety, 2025, 257: 110811. |
| [33] | 郭琼, 夏峰, 刘冰, 等. 全尺寸飞机结构静力试验约束点载荷计算及应用[J]. 科学技术与工程, 2020, 20(19): 7934-7940. |
| GUO Q, XIA F, LIU B, et al. Calculation and application of restraint load in full-scale aircraft static test[J]. Science Technology and Engineering, 2020, 20(19): 7934-7940 (in Chinese). | |
| [34] | 陈丽芳, 曹柯欣, 张思鹏, 等. 群智能优化算法最新进展[J]. 计算机工程与应用, 2024, 60(19): 46-67. |
| CHEN L F, CAO K X, ZHANG S P, et al. Recent progress of swarm intelligent optimization algorithms[J]. Computer Engineering and Applications, 2024, 60(19): 46-67 (in Chinese). | |
| [35] | 杨华, 陈树生, 高正红, 等. 基于贝叶斯框架的旋翼气动力数据融合[J]. 航空学报, 2024, 45(8): 128960. |
| YANG H, CHEN S S, GAO Z H, et al. Rotor aerodynamic data fusion based on Bayesian framework[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960 (in Chinese). | |
| [36] | LIU X, LAI H, WANG X Y, et al. Aerospace structural reliability analysis method based on regular vine copula model with the asymmetric tail correlation[J]. Aerospace Science and Technology, 2023, 142: 108670. |
| [37] | ZHAO Y L, DONG S. Multivariate probability analysis of wind-wave actions on offshore wind turbine via copula-based analysis[J]. Ocean Engineering, 2023, 288: 116071. |
| [1] | 冯蕴雯, 腾达, 路成, 王锐, 陈俊宇. 机理与生成对抗代理建模融合的飞机系统可靠性评估[J]. 航空学报, 2025, 46(7): 230948-230948. |
| [2] | 唐铠瑞, 王喆, 陈向明, 崔保让, 陈艳辉, 陈普会. 复合材料结构力学性能分布的多保真度数据驱动预测框架及验证[J]. 航空学报, 2025, 46(21): 532180-532180. |
| [3] | 施英杰, 刘斌超, 鲁嵩嵩, 陈亮, 尚海, 鲍蕊. 融合试验-仿真标定数据的机翼应变载荷关系神经网络模型[J]. 航空学报, 2025, 46(19): 530921-530921. |
| [4] | 黄熠玮, 耿一斌, 高天贺, 胡轩玮, 王圆, 马红艳, 田阔. 数字孪生驱动的结构全场变形高精度反演方法[J]. 航空学报, 2025, 46(19): 530967-530967. |
| [5] | 郭程洁, 徐典, 李进宝, 程超宇, 郭硕昌, 李锐. 基于数据融合-知识迁移方法的高温数字图像相关试验应力表征[J]. 航空学报, 2025, 46(19): 531574-531574. |
| [6] | 王鹏飞, 曾丽芳, 邵雪明, 黎军. 基于预训练微调的机翼气动载荷多源数据融合建模方法[J]. 航空学报, 2025, 46(19): 532297-532297. |
| [7] | 李立功, 张超, 苏婧婷. 面向多源着舰引导信息的分布式融合技术[J]. 航空学报, 2025, 46(13): 531461-531461. |
| [8] | 孟宪超, 陶俊. 基于目标检验条件生成对抗网络的翼型反设计方法[J]. 航空学报, 2025, 46(10): 631182-631182. |
| [9] | 胡登峰, 向渝, 张骏, 杨佳辰, 汪文勇. 基于径向基生成式对抗网络的多源数据融合方法[J]. 航空学报, 2025, 46(10): 631478-631478. |
| [10] | 杨华, 陈树生, 高正红, 姜权峰, 张伟. 基于贝叶斯框架的旋翼气动力数据融合[J]. 航空学报, 2024, 45(8): 128960-128960. |
| [11] | 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134-429134. |
| [12] | 宋海浪, 张建东, 史国庆, 杨啟明, 张耀中. 航空火控系统试飞综合评估技术与方法探讨[J]. 航空学报, 2024, 45(5): 529687-529687. |
| [13] | 张瑞桐, 汪雷, 刘佳佳, 朱继宏. 考虑接头参数化的空间桁架轻量化设计[J]. 航空学报, 2024, 45(5): 529715-529715. |
| [14] | 张帆, 丛玮, 田润操, 王鹏. 基于双层变权的异构数据融合及可靠性分析[J]. 航空学报, 2024, 45(22): 230297-230297. |
| [15] | 李春华, 孙见忠, 陆纪龙. 面向运维的HPT叶片寿命数字孪生建模方法[J]. 航空学报, 2024, 45(21): 629385-629385. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

