| [1] |
U.S. Department of Defense. Composite materials handbook. Volume 3, Polymer matrix composites materials: Usage, design, and analysis[M]. Warrendale: SAE International, 2002.
|
| [2] |
U.S. Department of Defense. Composite materials handbook. Volume 1, Polymer matrix composites: Guidelines for characterization of structural materials[M]. Warrendale: SAE International, 2002.
|
| [3] |
CUMBO R, BARONI A, RICCIARDI A, et al. Design allowables of composite laminates: A review[J]. Journal of Composite Materials, 2022, 56(23): 3617-3634.
|
| [4] |
PAPADRAKAKIS M, PAPADOPOULOS V. Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134(3-4): 325-340.
|
| [5] |
CAVDAR O, BAYRAKTAR A, CAVDAR A, et al. Perturbation based stochastic finite element analysis of the structural systems with composite sections under earthquake forces[J]. Steel and Composite Structures, 2008, 8(2): 129-144.
|
| [6] |
GHANEM R G, SPANOS P D. Spectral stochastic finite-element formulation for reliability analysis[J]. Journal of Engineering Mechanics, 1991, 117(10): 2351-2372.
|
| [7] |
STEFANOU G. The stochastic finite element method: Past, present and future[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9-12): 1031-1051.
|
| [8] |
CHAHAR R S, MUKHOPADHYAY T. Multi-fidelity machine learning based uncertainty quantification of progressive damage in composite laminates through optimal data fusion[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106647.
|
| [9] |
REINER J, LINDEN N, VAZIRI R, et al. Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites[J]. Composite Structures, 2023, 321: 117257.
|
| [10] |
REINER J. A multi-analysis framework for uncertainty quantification and data-driven simulation of design allowables in laminated composites[J]. Composites Science and Technology, 2025, 261: 111030.
|
| [11] |
FURTADO C, ARTEIRO A, BESSA M A, et al. Prediction of size effects in open-hole laminates using only the Young’s modulus, the strength, and the R-curve of the 0° ply[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 306-317.
|
| [12] |
VALLMAJÓ O, CÓZAR I R, FURTADO C, et al. Virtual calculation of the B-value allowables of notched composite laminates[J]. Composite Structures, 2019, 212: 11-21.
|
| [13] |
FURTADO C, PEREIRA L F, TAVARES R P, et al. A methodology to generate design allowables of composite laminates using machine learning[J]. International Journal of Solids and Structures, 2021, 233: 111095.
|
| [14] |
TANG K R, CUI Y Y, CHEN P H. A deep learning method for addressing the scarcity of experimental data in composite structures: Multi-fidelity triple LSTM[J]. Thin-Walled Structures, 2025, 211: 113106.
|
| [15] |
YUAN M Q, ZHAO H T, XIE Y H, et al. Prediction of stiffness degradation based on machine learning: Axial elastic modulus of [0m/90n]s composite laminates[J]. Composites Science and Technology, 2022, 218: 109186.
|
| [16] |
GISELLE FERNÁNDEZ-GODINO M. Review of multi-fidelity models[J]. Advances in Computational Science and Engineering, 2023, 1(4): 351-400.
|
| [17] |
BREVAULT L, BALESDENT M, HEBBAL A. Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities, application to aerospace systems[J]. Aerospace Science and Technology, 2020, 107: 106339.
|
| [18] |
MENG X H, EM K. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems[J]. Journal of Computational Physics, 2020, 401: 109020.
|
| [19] |
EGOROVA O, HAFIZI R, WOODS D C, et al. Multifidelity statistical machine learning for molecular crystal structure prediction[J]. The Journal of Physical Chemistry A, 2020, 124(39): 8065-8078.
|
| [20] |
OREJUELA I P, GONZÁLEZ C L, GUERRA X B, et al. Geoid undulation modeling through the Cokriging method-A case study of Guayaquil, Ecuador[J]. Geodesy and Geodynamics, 2021, 12(5): 356-367.
|
| [21] |
ROUCHON J. Certification of large airplane composite structures[C]∥ICAS Congress Proceedings.1990, 2: 1439-1447.
|
| [22] |
MARCH A, WILLCOX K, WANG Q. Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration[J]. The Aeronautical Journal, 2011, 115(1174): 729-738.
|
| [23] |
PERDIKARIS P, RAISSI M, DAMIANOU A, et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2017, 473(2198): 20160751.
|
| [24] |
MAHMOUDABADBOZCHELOU M, CAGGIONI M, SHAHSAVARI S, et al. Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework[J]. Journal of Rheology, 2021, 65(2): 179-198.
|
| [25] |
ZHANG P, YIN Z Y, JIN Y F, et al. Physics-informed multifidelity residual neural networks for hydromechanical modeling of granular soils and foundation considering internal erosion[J]. Journal of Engineering Mechanics, 2022, 148(4): 04022015.
|
| [26] |
PERDIKARIS P, RAISSI M, DAMIANOU A, et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2017, 473(2198): 20160751.
|
| [27] |
LU L, DAO M, KUMAR P, et al. Extraction of mechanical properties of materials through deep learning from instrumented indentation[J]. PNAS 2020, 117(13): 7052-7062.
|
| [28] |
GREEN B G, WISNOM M R, HALLETT S R. An experimental investigation into the tensile strength scaling of notched composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(3): 867-878.
|
| [29] |
RIDHA M, WANG C H, CHEN B Y, et al. Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 16-23.
|
| [30] |
LAFFAN M, PINHO S, ROBINSON P, et al. Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part Ⅱ: Size and lay-up effects[J]. Composites Science and Technology, 2010, 70(4): 614-621.
|
| [31] |
JOHNSON N L, BALAKRISHNAN N. Continuous Univariate distributions[M]. 2nd ed. New York: John Wiley & Sons Inc, 1994: 515-516.
|
| [32] |
METROPOLIS N, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341.
|
| [33] |
PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
|
| [34] |
BERGER J. The case for objective Bayesian analysis[J]. Bayesian Analysis, 2006, 1(3): 385-402.
|
| [35] |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis[M]. 3rd ed. New York: Chapman and Hall/CRC, 2025: 150-151.
|
| [36] |
AKIBA T, SANO S, YANASE T, et al. Optuna: A next-generation hyperparameter optimization framework[C]∥Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 2623-2631.
|