| 1 |
唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报, 2023, 41(8): 44-58.
|
|
TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica, 2023, 41(8): 44-58 (in Chinese).
|
| 2 |
邓晨, 陈功, 王文正, 等. 基于不确定度和气动模型的气动数据融合算法[J]. 空气动力学学报, 2022, 40(4): 117-123.
|
|
DENG C, CHEN G, WANG W Z, et al. Aerodynamic data fusion algorithms based on aerodynamic model and uncertainly[J]. Acta Aerodynamica Sinica, 2022, 40(4): 117-123 (in Chinese).
|
| 3 |
POLOCZEK M, WANG J, FRAZIER P I. Multi-information source optimization[DB/OL]. arXiv preprint: 1603.00389v2, 2017.
|
| 4 |
HE L, QIAN W Q, ZHAO T, et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy, 2020, 22(9): 1022.
|
| 5 |
唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1-35.
|
|
TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1-35 (in Chinese).
|
| 6 |
LIANG X Y, QIAN Y H, GUO Q, et al. AF: An association-based fusion method for multi-modal classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9236-9254.
|
| 7 |
ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]∥22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015.
|
| 8 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
| 9 |
HU L W, ZHANG J, XIANG Y, et al. Neural networks-based aerodynamic data modeling: A comprehensive review[J]. IEEE Access, 2020, 8: 90805-90823.
|
| 10 |
MARCATO A, BOCCARDO G, MARCHISIO D L. A computational workflow to study particle transport in porous media: Coupling CFD and deep learning[M]∥30th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier, 2020: 1759-1764.
|
| 11 |
PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305: 758-774.
|
| 12 |
LI J H, LI B, XU J Z, et al. Fully connected network-based intra prediction for image coding[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3236-3247.
|
| 13 |
BELYAEV M, BURNAEV E, KAPUSHEV E, et al. Building data fusion surrogate models for spacecraft aerodynamic problems with incomplete factorial design of experiments[J]. Advanced Materials Research, 2014, 1016: 405-412.
|
| 14 |
王文正, 桂业伟, 何开锋, 等. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报, 2009, 27(5): 524-528.
|
|
WANG W Z, GUI Y W, HE K F, et al. Aerodynamic data fusion technique exploration[J]. Acta Aerodynamica Sinica, 2009, 27(5): 524-528 (in Chinese).
|
| 15 |
张骏, 张广博, 程艳青, 等. 一种气动大差异性数据多任务学习方法[J]. 空气动力学学报, 2022, 40(6): 64-72.
|
|
ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica, 2022, 40(6): 64-72 (in Chinese).
|
| 16 |
赵旋, 彭绪浩, 邓子辰, 等. 基于多源数据融合的翼型表面压强精细化重构方法[J]. 实验流体力学, 2022, 36(3): 93-101.
|
|
ZHAO X, PENG X H, DENG Z C, et al. Fine reconstruction method of airfoil surface pressure based on multi-source data fusion[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 93-101 (in Chinese).
|
| 17 |
王旭, 宁晨伽, 王文正, 等. 面向飞行试验的多源气动数据智能融合方法[J]. 空气动力学学报, 2023, 41(2): 12-20.
|
|
WANG X, NING C J, WANG W Z, et al. Intelligent fusion method of multi-source aerodynamic data for flight tests[J]. Acta Aerodynamica Sinica, 2023, 41(2): 12-20 (in Chinese).
|
| 18 |
LI K, KOU J Q, ZHANG W W. Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data[J]. AIAA Journal, 2022, 60(7): 4413-4427.
|
| 19 |
HU L W, XIANG Y, ZHANG J, et al. Aerodynamic data predictions based on multi-task learning[J]. Applied Soft Computing, 2022, 116: 108369.
|
| 20 |
GIROSI F, POGGIO T. Networks and the best approximation property[J]. Biological Cybernetics, 1990, 63(3): 169-176.
|
| 21 |
POGGIO T, GIROSI F. Networks for approximation and learning[J]. Proceedings of the IEEE, 1990, 78(9): 1481-1497.
|
| 22 |
HU L W, WANG W Y, XIANG Y, et al. Flow field reconstructions with GANs based on radial basis functions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3460-3476.
|
| 23 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
|
| 24 |
FASSHAUER G E, YE Q. Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators[J]. Numerische Mathematik, 2011, 119: 585-611.
|