收稿日期:
2023-07-17
修回日期:
2023-08-02
接受日期:
2023-08-22
出版日期:
2023-09-04
发布日期:
2023-09-01
通讯作者:
周静飘
E-mail:a045519zjp@163.com
基金资助:
Yongjie ZHANG1, Jingpiao ZHOU1(), Lei SHI1, Dong LI2, Binqian ZHANG2
Received:
2023-07-17
Revised:
2023-08-02
Accepted:
2023-08-22
Online:
2023-09-04
Published:
2023-09-01
Contact:
Jingpiao ZHOU
E-mail:a045519zjp@163.com
Supported by:
摘要:
翼身融合(BWB)是一种非常规亚声速运输机布局形式。针对该布局下民机后压力框的设计问题,基于美国国家航空航天局(NASA)提出的拉挤杆缝合一体化(PRSEUS)结构,开展了中央机体球亏面框优化设计工作。分别建立了某型BWB民机铝合金平面框、PRSEUS球亏面框有限元模型,数值模拟结果显示,PRSEUS球亏面框具有更好的承载性能、更低的结构重量。在此基础上,进一步对PRSEUS球亏面框开展敏度分析,对其静强度、稳定性的影响参数进行了梳理,对影响规律进行了归纳。通过分析关键参数在协同优化过程中的影响,筛选得到了一种基于代理模型的协同优化策略,该协同优化策略适用性强、优化效率高。利用该协同优化方法,对PRSEUS球亏面框的尺寸参数进行了优化。通过对优化结果的最优性分析,获得了兼顾静强度、稳定性的优化方案,优化后的PRSEUS球亏面框重量减轻了10.6%。设计的PRSEUS球亏面框承载效率高、稳定性能好,可为相关领域设计与研究人员提供参考。
中图分类号:
张永杰, 周静飘, 石磊, 李栋, 张彬乾. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法[J]. 航空学报, 2024, 45(12): 229331-229331.
Yongjie ZHANG, Jingpiao ZHOU, Lei SHI, Dong LI, Binqian ZHANG. Optimization design method of central fuselage spherical deficient surface frames in blended⁃wing⁃body civil aircraft based on PRSEUS structure[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 229331-229331.
1 | LIEBECK R. Design of the Blended-Wing-Body subsonic transport[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
2 | MUKHOPADHYAY V. Hybrid-wing-body pressurized fuselage modeling, analysis and design for weight reduction[C]∥ Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. |
3 | WU H Y T, SHAW P, PRZEKOP A. Analysis of a hybrid wing body center section test article[C]∥ Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. |
4 | PRZEKOP A. Repair concepts as design constraints of a stiffened composite PRSEUS panel[C]∥ Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. |
5 | VELICKI A, JEGLEY D. PRSEUS development for the hybrid wing body aircraft[C]∥ Proceedings of the AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”. Reston: AIAA, 2011. |
6 | PAPAPETROU V S, TAMIJANI A, KIM D. Preliminary Wing Study of General Aviation Aircraft with PRSEUS panels[C]∥ Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016. |
7 | LI V, VELICKI A. Advanced PRSEUS structural concept design and optimization[C]∥ Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008. |
8 | ETTOUMI S. Study of analysis and damage prediction methods of BWB wing structure based on PRSEUS[D]. Xi’an: Northwestern Polytechnical University, 2023: 2-4. |
9 | NIU C. Airframe stress analysis and sizing[M]. 3rd ed. Madrid: Adaso/Adastra Engineering Center, 2011. |
10 | 飞机设计手册总编委会. 飞机设计手册第10册[M]. 北京:航空工业出版社, 2005: 540-554. |
Editorial Board of Aireraft Design Manual. Aircraft designmanual,Part10[M].Beijing: Aviation Industry Press, 2005: 540-554 (in Chinese). | |
11 | 陶梅贞. 现代飞机结构综合设计[M]. 西安: 西.北工业大学出版社, 2014: 254-258. |
TAO M Z. Comprehensive design of modern aircraft structure[M]. Xi’an: Northwestern Polytechnical University Press, 2014: 254-258 (in Chinese). | |
12 | VENKATESH S, KUTTY M, VARUGHESE B, et al. Design, Development and certification of composite rear pressure bulkhead for a light transport aircraft[C]∥ 18th International Conference on Composite Materials. Melbourne: ICCM, 2011: 1-6. |
13 | LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4): 508-516. |
14 | ZHU W S, FAN Z W, YU X Q. Structural mass prediction in conceptual design of blended-wing-body aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2455-2465. |
15 | NIU B M C Y. Airframe structural design: practical design information and data on aircraft structures[M]. 2nd ed. Madrid: Adaso/Adastra Engineering Center, 1999. |
16 | VELICKI A, YOVANOF N P, BARAJA J, et al. Damage arresting composites for shaped vehicles—Phase II Final report[R]. Washington, D. C. : NASA, 2011. |
17 | 中国民用航空总局. 运输类飞机适航标准:CCAR-25-R4 [S]. 北京: 中华人民共和国交通运输部, 2011. |
General Administration of Civil Aviation of China. China Civil Aviation Regulations:CCAR-25-R4 [S]. Beijing: Ministry of Transport of the People’s Republic of China, 2011 (in Chinese). | |
18 | 郝一鸣. 复合材料后压力框整体结构设计及其稳定性分析研究[D]. 上海: 上海交通大学, 2011: 47-54. |
HAO Y M. Stability analysis and global structure design of composite rear pressure bulkhead[D].Shanghai: Shanghai Jiao Tong University, 2011: 47-54 (in Chinese) . | |
19 | 刘蔚. 多学科设计优化方法在7 000米载人潜水器总体设计中的应用[D]. 上海: 上海交通大学, 2007: 10-14. |
LIU W/Y). Application of MDO method to 7 000m HOV general design[D].Shanghai: Shanghai Jiao Tong University, 2007: 10-14 (in Chinese) . | |
20 | 张伟林. 多学科设计优化在悬架设计中的应用研究[D]. 长春: 吉林大学, 2017: 23-47. |
ZHANG W L. Suspension applied research based on multi-disciplinary design optimization[D].Changchun: Jilin University, 2017: 23-47 (in Chinese). | |
21 | 王振国, 陈小前, 罗文彩, 等. 飞行器多学科设计优化理论与应用研究[M]. 北京: 国防工业出版社, 2006: 229-231. |
WANG Z G, CHEN X Q, LUO W C, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing: National Defense Industry Press, 2006: 229-231 (in Chinese). | |
22 | 宋保维, 王鹏. 鱼雷多学科设计优化理论与应用研究[M]. 西安: 西北工业大学出版社, 2016: 105-107. |
SONG B W, WANG P. Research on theory and application of multidisciplinary design optimization of torpedo[M]. Xi’an: Northwestern Polytechnical University Press, 2016: 105-107 (in Chinese). | |
23 | 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用[M]. 北京: 科学出版社, 2013: 82-84. |
CHEN X Q, YAO W, OUYANG Q. Theory and application of uncertainty-based multidisciplinary design optimization for flight vehicles[M]. Beijing: Science Press, 2013: 82-84 (in Chinese). | |
24 | 叶鹏程. 代理模型技术研究及其在水下滑翔机外形设计中的应用[D]. 西安: 西北工业大学, 2017: 28-29. |
YE P C. Research on surrogate modeling techniques and applied to shape design of autonomous underwater glider[D].Xi’an: Northwestern Polytechnical University, 2017: 28-29 (in Chinese). | |
25 | ILAN K, STEVE A, ROBERT B, et al. Multidisciplinary optimization methods for aircraft preliminary design[C]∥ 5th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA,1994. |
26 | 刘自豪. 极地AUV的优化设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020: 28-34. |
LIU Z H. Research on optimal design method of Arctic AUV[D].Harbin: Harbin Engineering University, 2020: 28-34 (in Chinese). |
[1] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[2] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[3] | 李玉涵, 杨宝玉, 吴亦农, 张强, 唐晓. 卫星光机载荷热模型参数高效修正方法研究进展[J]. 航空学报, 2024, 45(6): 628814-628814. |
[4] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
[5] | 高天贺, 田阔, 黄蕾, 张澍, 李增聪. 数据驱动的曲面构件形状⁃拓扑协同优化方法[J]. 航空学报, 2024, 45(2): 428806-428806. |
[6] | 许敉, 毛泽钡, 王博, 李桐. 快速优化薄板中各向异性材料分布的等效变形模量算法[J]. 航空学报, 2024, 45(10): 229273-229273. |
[7] | 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962-126962. |
[8] | 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023, 44(5): 126924-126924. |
[9] | 郑志阳, 张阳, 张钊, 吴宝海, 张莹. 基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023, 44(4): 426805-426805. |
[10] | 于汀, 李璐祎, 刘昱杉, 常泽明. 观测不确定性下的高效贝叶斯更新方法及其在机翼结构中的应用[J]. 航空学报, 2023, 44(24): 228592-228592. |
[11] | 员婉莹, 吕震宙. 参数可靠性全局灵敏度高效分析的代理模型法[J]. 航空学报, 2023, 44(12): 227670-227670. |
[12] | 牛俊杰, 桑为民, 李栋, 郝莲, 王泽林. 一种基于水滴收集量代理模型的结冰试飞空域确定方法[J]. 航空学报, 2023, 44(1): 627697-627697. |
[13] | 郭琪磊, 桑为民, 牛俊杰, 袁烨. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518-627518. |
[14] | 杨倩, 郭晓峰, 李芹, 董威. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992-626992. |
[15] | 胡嘉欣, 芮姝, 高瑞朝, 苟建军, 龚春林. 飞行器结构布局与尺寸混合优化方法[J]. 航空学报, 2022, 43(5): 225363-225363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学