1 |
MOSES P L. X-43C plans and status: AIAA-2003-7084 [R]. Reston: AIAA, 2003.
|
2 |
LONGSTAFF R, BOND A. The SKYLON project: AIAA-2011-2244[R]. Reston: AIAA, 2011.
|
3 |
MEHTA U, AFTOSMIS M, BOWLES J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2): 340-353.
|
4 |
SKUJINS T, CESNIK C E S, OPPENHEIMER M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 90-100.
|
5 |
HALLOCK J N, HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36.
|
6 |
CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5): 1-16.
|
7 |
程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报, 2020, 41(9): 123751.
|
|
CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123751 (in Chinese).
|
8 |
邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8): 122712.
|
|
QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122712 (in Chinese).
|
9 |
KALKHORAN I M, SMART M K. Aspects of shock wave-induced vortex breakdown[J]. Progress in Aerospace Sciences, 2000, 36(1): 63-95.
|
10 |
GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.
|
11 |
NEDUNGADI A, LEWIS M J. Computational study of the flowfields associated with oblique shock/vortex interactions[J]. AIAA Journal, 1996, 34(12): 2545-2553.
|
12 |
BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics, 1964, 20(4): 645-658.
|
13 |
BIRCH D, LEE T, MOKHTARIAN F, et al. Structure and induced drag of a tip vortex[J]. Journal of Aircraft, 2004, 41(5): 1138-1145.
|
14 |
BENINATI M L, MARSHALL J S. An experimental study of the effect of free-stream turbulence on a trailing vortex[J]. Experiments in Fluids, 2005, 38(2): 244-257.
|
15 |
RAMAPRIAN B R, ZHENG Y X. Near field of the tip vortex behind an oscillating rectangular wing[J]. AIAA Journal, 1998, 36(7): 1263-1269.
|
16 |
GROW T L. Effect of a wing on its tip vortex[J]. Journal of Aircraft, 1969, 6(1): 37-41.
|
17 |
MCALISTER K W, TAKAHASHI R K. NACA 0015 wing pressure and trailing vortex measurements[R]. Washington D.C.: NASA, 1991.
|
18 |
RAMAPRIAN B R, ZHENG Y X. Measurements in rollup region of the tip vortex from a rectangular wing[J]. AIAA Journal, 1997, 35(12): 1837-1843.
|
19 |
SKINNER S N, GREEN R B, ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids, 2020, 32(9): 095102.
|
20 |
SMART M K, KALKHORAN I M, BENTSON J. Measurements of supersonic wing tip vortices[J]. AIAA Journal, 1995, 33(10): 1761-1768.
|
21 |
SHEVCHENKO A, KHARITONOV A, SHMAKOV A. Hypersonic vortex wake behind the wing and its interaction with shock waves[C]∥5 th European Conference for Aerospace Sciences, 2013.
|
22 |
KALKHORAN I M, SMART M K, BETTI A. Interaction of supersonic wing-tip vortices with a normal shock[J]. AIAA Journal, 1996, 34(9): 1855-1861.
|
23 |
SMART M K, KALKHORAN I M. Effect of shock strength on oblique shock-wave/vortex interaction[J]. AIAA Journal, 1995, 33(11): 2137-2143.
|
24 |
MAGRI V, KALKHORAN I M. Numerical investigation of oblique shock wave/vortex interaction[J]. Computers & Fluids, 2013, 86: 343-356.
|
25 |
CATTAFESTA L N, SETTLES G S. Experiments on shock/vortex interactions: AIAA-1992-0315[R]. Reston: AIAA, 1992.
|
26 |
HIEJIMA T. Criterion for vortex breakdown on shock wave and streamwise vortex interactions[J]. Physical Review E, 2014, 89(5): 053017.
|
27 |
SMART M K, KALKHORAN I M. Flow model for predicting normal shock wave induced vortex breakdown[J]. AIAA Journal, 1997, 35(10): 1589-1596.
|
28 |
MAHESH K. A model for the onset of breakdown in an axisymmetric compressible vortex[J]. Physics of Fluids, 1996, 8(12): 3338-3345.
|
29 |
ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics, 1997, 337: 129-153.
|
30 |
DELERY J, HOROWITZ E, LEUCHTER O, et al. Fundamental studies on vortex flows[J]. Recherche Aerospatiale (English Edition), 1984(2): 1-24.
|
31 |
GRUHN P, GÜLHAN A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8[J]. AIAA Journal, 2018, 56(11): 4282-4296.
|
32 |
童秉纲, 孔祥言, 邓国华. 气体动力学[M].第 2版. 北京: 高等教育出版社, 2012: 137-143.
|
|
TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 137-143 (in Chinese).
|
33 |
李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术, 2016, 37(7): 1224-1232.
|
|
LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7): 1224-1232 (in Chinese).
|
34 |
LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1): 44-49.
|
35 |
BERESH S J, HENFLING J F, SPILLERS R W. Planar velocimetry of a fin trailing vortex in subsonic compressible flow[J]. AIAA Journal, 2009, 47(7): 1730-1740.
|
36 |
马印锴, 李祝飞, 杨基明. 高马赫数来流条件下斜激波与流向涡对相互作用[J]. 推进技术, 2022, 43(1): 88-99.
|
|
MA Y K, LI Z F, YANG J M. Oblique shock wave/streamwise-vortex-pair interaction at a high Mach number[J]. Journal of Propulsion Technology, 2022, 43(1): 88-99 (in Chinese).
|
37 |
MA Y K, LI Z F, YANG J M. Planar laser scattering visualization of streamwise vortex pairs in a Mach 6 flow[J]. Chinese Journal of Aeronautics, 2023, 36(1): 166-177.
|
38 |
BIRCH D M. Self-similarity of trailing vortices[J]. Physics of Fluids, 2012, 24(2): 025105.
|
39 |
WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513.
|