1 |
BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power, 1976, 98(1): 29-36.
|
2 |
ROELKE R J, HAAS J E. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine[J]. Journal of Engineering for Power, 1983, 105(2): 377-382.
|
3 |
GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703.
|
4 |
SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9): 091005.
|
5 |
SCHROEDER R P, THOLE K A. Effect of in-hole roughness on film cooling from a shaped hole[J]. Journal of Turbomachinery, 2017, 139(3): 031004.
|
6 |
LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 112601.
|
7 |
XIONG J T, YANG J, MCBEAN I, et al. Statistical evaluation of the performance impact of manufacturing variations for steam turbines[C]∥ Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: 56553.
|
8 |
蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报, 2017, 38(3): 490-497.
|
|
CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 490-497 (in Chinese).
|
9 |
MA C, GAO L M, WANG H B, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics, 2021, 34(6): 220-232.
|
10 |
刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796.
|
|
LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796 (in Chinese).
|
11 |
DOW E A, WANG Q Q. The implications of tolerance optimization on compressor blade design[J]. Journal of Turbomachinery, 2015, 137(10): 101008.
|
12 |
颜勇, 祝培源, 宋立明, 等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术, 2017, 38(8): 1767-1775.
|
|
YAN Y, ZHU P Y, SONG L M, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8): 1767-1775 (in Chinese).
|
13 |
LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77: 471-484.
|
14 |
NILSSON P. A study on the impact of blade tolerances on turbine performance[D]. Goteborg: Chalmers University on Technology, 2016.
|
15 |
WANG X J, ZOU Z P. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy, 2019, 176: 67-80.
|
16 |
张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11): 2130-2138.
|
|
ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2130-2138 (in Chinese).
|
17 |
张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11): 1830-1834.
|
|
ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1830-1834 (in Chinese).
|
18 |
TAO Z, GUO Z D, SONG L M, et al. Uncertainty quantification of aero-thermal performance of a blade endwall considering slot geometry deviation and mainstream fluctuation[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021: 111013.
|
19 |
XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology, 2019, 90: 127-139.
|
20 |
刘艳. 叶片制造技术[M]. 北京: 科学出版社, 2002: 385-409.
|
|
LIU Y. Blade manufacturing technology[M]. Beijing: Science Press, 2002: 385-409 (in Chinese).
|
21 |
中国航空工业总公司六二四所. 叶片叶型的标注、公差与叶身表面粗糙度: [S]. 北京: 中国航空工业总公司, 1999.
|
|
CGTE. Blade labeling, tolerance and surface roughness: [S]. Beijing: Aviation Industry Corporation of China, 1999 (in Chinese).
|
22 |
樊振中, 徐秀利, 王玉灵, 等. 熔模精密铸造技术在航空工业的应用及发展[J]. 特种铸造及有色合金, 2014, 34(3): 285-289.
|
|
FAN Z Z, XU X L, WANG Y L, et al. Investment casting technology application and development in the aviation industry[J]. Special Casting & Nonferrous Alloys, 2014, 34(3): 285-289 (in Chinese).
|
23 |
蒋睿嵩, 汪文虎, 王增强, 等. 航空发动机涡轮叶片精密成形技术及其发展趋势[J]. 航空制造技术, 2016, 59(21): 57-62.
|
|
JIANG R S, WANG W H, WANG Z Q, et al. Precision forming technology and its development trend of aeroengine turbine blade[J]. Aeronautical Manufacturing Technology, 2016, 59(21): 57-62 (in Chinese).
|
24 |
黄智, 李凯, 赵燎, 等. 航空发动机叶片型面轮廓光学测量技术现状及发展趋势[J]. 航空制造技术, 2018, 61(22): 28-35.
|
|
HUANG Z, LI K, ZHAO L, et al. Current technique and development trend of optical measurement of aero-engine blade profile[J]. Aeronautical Manufacturing Technology, 2018, 61(22): 28-35 (in Chinese).
|
25 |
赵圆圆, 曾飞, 李洋, 等. 基于光场成像的快照式气膜孔三维测量技术[J]. 航空学报, 2021, 42(10): 524158.
|
|
ZHAO Y Y, ZENG F, LI Y, et al. A light-field imaging based film cooling hole 3D measurement technique[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524158 (in Chinese).
|
26 |
蔺小军, 刘相柱, 郭研, 等. 基于CMM测量的航空发动机叶片型面误差分离技术[J]. 计量学报, 2014, 35(1): 18-24.
|
|
LIN X J, LIU X Z, GUO Y, et al. Error separation techniques for aero-engine blade surface based on the measurement of CMM[J]. Acta Metrologica Sinica, 2014, 35(1): 18-24 (in Chinese).
|
27 |
张明德, 罗冲, 张卫青, 等. 航发叶片的测量数据误差处理方法研究[J]. 组合机床与自动化加工技术, 2017(1): 57-61.
|
|
ZHANG M D, LUO C, ZHANG W Q, et al. Research on processing method of measuring data error of precision forging aeroengine blade[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(1): 57-61 (in Chinese).
|
28 |
DUNN F, PARBERRY I. 3D math primer for graphics and game development[M]. Plano: Wordware Publishing, Inc., 2002.
|
29 |
段志勇, 袁信. 基于四元数方法的GPS航姿解算[J]. 南京航空航天大学学报, 1999, 31(5): 492-496.
|
|
DUAN Z Y, YUAN X. GPS based attitude determination based on quaternion algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(5): 492-496 (in Chinese).
|
30 |
陈万春, 肖业伦, 赵丽红, 等. 四元数的核心矩阵及其在航天器姿态控制中的应用[J]. 航空学报, 2000, 21(5): 389-392.
|
|
CHEN W C, XIAO Y L, ZHAO L H, et al. Kernel matrix of quaternion and its application in spacecraft attitude control[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(5): 389-392 (in Chinese).
|
31 |
崔培林, 周翟和, 吕品, 等. 自适应误差四元数无迹卡尔曼滤波四旋翼飞行器姿态解算方法[J]. 西安交通大学学报, 2019, 53(3): 97-102, 110.
|
|
CUI P L, ZHOU Z H, LÜ P, et al. Adaptive error quaternion unscented Kalman filter algorithm for quadrotor attitude calculation[J]. Journal of Xi’an Jiaotong University, 2019, 53(3): 97-102, 110 (in Chinese).
|