收稿日期:
2022-05-16
修回日期:
2022-06-13
接受日期:
2022-08-08
出版日期:
2023-02-15
发布日期:
2022-10-26
通讯作者:
郑伟
E-mail:zhengwei@nudt.edu.cn
基金资助:
Wei ZHENG1(), Yusong WANG1, Kun JIANG2, Yidi WANG1
Received:
2022-05-16
Revised:
2022-06-13
Accepted:
2022-08-08
Online:
2023-02-15
Published:
2022-10-26
Contact:
Wei ZHENG
E-mail:zhengwei@nudt.edu.cn
Supported by:
摘要:
X射线脉冲星导航技术是一种新兴的、有潜力的航天器自主导航技术。作为导航参考源,脉冲星的自转长期稳定性极佳。因此,X射线脉冲星导航在深空探测、星座自主导航以及时间基准自主维持等领域具有较大优势。首先,对X射线脉冲星导航的背景意义进行了简要介绍。其次,介绍了X射线脉冲星导航2个方面的关键技术:面向导航的脉冲星数据处理技术以及脉冲星导航理论的研究进展。再次,总结了现有的以及未来可能的X射线脉冲星导航应用体制。最后,展望了X射线脉冲星导航技术的发展趋势,并对全文进行了总结。
中图分类号:
郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航方法研究综述[J]. 航空学报, 2023, 44(3): 527451-527451.
Wei ZHENG, Yusong WANG, Kun JIANG, Yidi WANG. Overview of X-ray pulsar-based navigation methods[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 527451-527451.
1 | LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012. |
2 | SHEIKH S I. The use of variable celestial X-Ray sources for spacecraft navigation [D]. Maryland: University of Maryland, 2005. |
3 | 朱慈墭. 天文学教程[M]. 北京: 高等教育出版社, 2003. |
ZHU C S. Astronomy course[M]. Beijing: Higher Education Press, 2003 (in Chinese). | |
4 | DENEVA J S, RAY P S, LOMMEN A, et al. High-precision X-ray timing of three millisecond pulsars with NICER: stability estimates and comparison with radio[J]. The Astrophysical Journal Letters, 2019, 874(2): 160. |
5 | ZHENG W, WANG Y D. X-ray pulsar-based navigation: Theory and applications[M]. Singapore: Springer Singapore, 2020. |
6 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538. |
7 | 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学, 2017, 47(9): 120-128. |
ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(9): 120-128 (in Chinese). | |
8 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[J]. Astrophysical Journal Supplement Series, 2019, 244(1):1-18. |
9 | 丁陶伟, 帅平, 黄良伟, 等. 基于扩展卡尔曼滤波的XPNAV-1卫星自主定轨算法研究[J]. 中国空间科学技术, 2021, 41(1): 13-21. |
DING T W, SHUAI P, HUANG L W, et al. An autonomous orbit determination algorithm of XPNAV-1 based on extended Kalman filtering[J]. Chinese Space Science and Technology, 2021, 41(1): 13-21 (in Chinese). | |
10 | 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据 处理与分析[J]. 宇航学报, 2018, 39(4): 411-417. |
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese). | |
11 | 姜坤, 焦文海, 郝晓龙, 等. 脉冲星试验01星科学试验与成果[J/OL]. 航空学报, [2022-06-06].. |
JIANG K, JIAO W H, HAO X L, et al. Scientific experiments and achievements of XPNAV-1 [J/OL]. Acta Aeronautica et Astronautica Sinica, [2022-06-06]. (in Chinese). | |
12 | 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报, 2017, 38(5): 1-9. |
LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 1-9 (in Chinese). | |
13 | EMADZADEH A A, SPEYER J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4484-4495. |
14 | WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥ 2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14. |
15 | 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科学技术大学, 2011. |
WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011 (in Chinese). | |
16 | LOMB N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and Space Science, 1976, 39(2): 447-462. |
17 | SCARGLE J D. Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal Letters, 1982, 263: 835. |
18 | SCHWARZENBERG-CZERNY A. On the advantage of using analysis of variance for period search[J]. Monthly Notices of the Royal Astronomical Society, 1989, 241(2): 153-165. |
19 | DWORETSKY M M. A period-finding method for sparse randomly spaced observations or “How long is a piece of string?”[J]. Monthly Notices of the Royal Astronomical Society, 1983, 203(4): 917-924. |
20 | CLARKE D. String/Rope length methods using the Lafler-Kinman statistic[J]. Astronomy & Astrophysics, 2002, 386(2): 763-774. |
21 | MAYO W T Jr. Spectrum measurements with laser velocimeters[M]∥ Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows. Dordrecht: Springer Netherlands, 1978: 851-868. |
22 | EDELSON R A, KROLIK J H. The discrete correlation function - A new method for analyzing unevenly sampled variability data[J]. The Astrophysical Journal Letters, 1988, 333: 646. |
23 | HUIJSE P, ESTEVEZ P A, PROTOPAPAS P, et al. An information theoretic algorithm for finding periodicities in stellar light curves[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5135-5145. |
24 | 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法[J]. 物理学报, 2013, 62(1): 019701. |
ZHOU Q Y, JI J F, REN H F. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data[J]. Acta Physica Sinica, 2013, 62(1): 019701 (in Chinese). | |
25 | 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法[J]. 物理学报, 2012, 61(6): 069701. |
LI J X, KE X Z, ZHAO B S. A new time-domain estimation method for period of pulsars[J]. Acta Physica Sinica, 2012, 61(6): 069701 (in Chinese). | |
26 | 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法[J]. 物理学报, 2011, 60(3): 039701. |
ZHANG H, XU L P. Minimum entropy cumulation method of pulsar profile[J]. Acta Physica Sinica, 2011, 60(3): 039701 (in Chinese). | |
27 | 张新源, 帅平, 黄良伟. 脉冲星导航轮廓折叠失真与周期估计算法[J]. 宇航学报, 2015, 36(9): 1056-1060. |
ZHANG X Y, SHUAI P, HUANG L W. Profile folding distortion and period estimation for pulsar navigation[J]. Journal of Astronautics, 2015, 36(9): 1056-1060 (in Chinese). | |
28 | 宋佳凝. X射线脉冲星信号处理与导航定位方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
SONG J N. Research on X-ray pulsar-based navigation methods and signal processing algorithms[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
29 | LIU J, YANG Z H, KANG Z W, et al. Fast CS-based pulsar period estimation method without tentative epoch folding and its CRLB[J]. Acta Astronautica, 2019, 160: 90-100. |
30 | 刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报, 2020, 41(8): 623486. |
LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623486 (in Chinese). | |
31 | EMADZADEH A A, SPEYER J L. X-ray pulsar-based relative navigation using epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2317-2328. |
32 | ZHANG H, XU L P, SHEN Y H, et al. A new maximum-likelihood phase estimation method for X-ray pulsar signals[J]. Journal of Zhejiang University SCIENCE C, 2014, 15(6): 458-469. |
33 | 王文波, 张晓东, 汪祥莉. 脉冲星信号的经验模态分解模态单元比例萎缩消噪算法[J]. 物理学报, 2013, 62(6): 069701. |
WANG W B, ZHANG X D, WANG X L. Pulsar signal denoising method based on empirical mode decomposition mode cell proportion shrinking[J]. Acta Physica Sinica, 2013, 62(6): 069701 (in Chinese). | |
34 | 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪[J]. 物理学报, 2012, 61(13): 139701. |
GAO G R, LIU Y P, PAN Q. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising[J]. Acta Physica Sinica, 2012, 61(13): 139701 (in Chinese). | |
35 | 高迎东, 王宏力, 由四海, 等. 基于双参数阈值函数和多层阈值的X射线脉冲星信号消噪[J]. 光学学报, 2019, 39(12): 18-27. |
GAO Y D, WANG H L, YOU S H, et al. X-ray pulsar signal denoising based on two-parameter threshold function and multi-layer threshold[J]. Acta Optica Sinica, 2019, 39(12): 18-27 (in Chinese). | |
36 | 高迎东, 王宏力, 由四海, 等. 基于小波基函数选取与改进阈值函数的脉冲星信号去噪算法研究[J]. 电光与控制, 2020, 27(4): 15-19. |
GAO Y D, WANG H L, YOU S H, et al. A pulsar signal denoising algorithm based on wavelet basis function selection and improved threshold function[J]. Electronics Optics & Control, 2020, 27(4): 15-19 (in Chinese). | |
37 | WANG Y D, ZHENG W, ZHANG D P, et al. Pulsar profile denoising using kernel regression based on maximum correntropy criterion[J]. Optik, 2017, 130: 757-764. |
38 | EMADZADEH A. Relative navigation between two spacecraft using X-Ray pulsars [D]. California: University of California, 2009. |
39 | SU J Y, FANG H Y, BAO W M, et al. A maximum a posteriori estimation based method for estimating pulse time delay[J]. Advances in Space Research, 2022, 69(11): 3966-3982. |
40 | GOLSHAN A, SHEIKH S. On pulse phase estimation and tracking of variable celestial X-ray sources[C]∥ 63rd Annual Meeting of the Institute of Navigation, Cambridge, 2007: 410–412. |
41 | HUANG L W, LIANG B, ZHANG T. Pulse phase and Doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4): 848-858. |
42 | WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation, 2016, 69(2): 414-432. |
43 | WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2210-2219. |
44 | 张大鹏, 李治泽, 王奕迪, 等. X射线脉冲星动态信号处理方法研究[J]. 深空探测学报, 2019, 6(4): 335-340. |
ZHANG D P, LI Z Z, WANG Y D, et al. Dynamic data processing for X-ray pulsar signal[J]. Journal of Deep Space Exploration, 2019, 6(4): 335-340 (in Chinese). | |
45 | WANG Y S, WANG Y D, ZHENG W. On-orbit pulse phase estimation based on CE-Adam algorithm[J]. Aerospace, 2021, 8(4): 95. |
46 | REICHLEY P, DOWNS G, MORRIS G. Use of pulsar signals as clock [J]. NASA Jet Propulsion Laboratory Quarterly Technical Review, 1971, 1(2):80-86. |
47 | DOWNS G. Interplanetary navigation using pulsating radio sources[R]. Washingtion: NASA, 1974. |
48 | CHESTER T, BUTMAN S. Navigation using X-ray pulsars[R]. Washingtion: NASA, 1981. |
49 | WOOD K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]∥ Optical Engineering and Photonics in Aerospace Sensing. Proc SPIE 1940, Small Satellite Technology and Applications III, 1940: 105-116. |
50 | SALA J, URRUELA A, VILLARES X, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information [R]. 2004. |
51 | GRAVEN P, COLLINS J, SHEIKH S, et al. XNAV beyond the moon[C]∥ Proceedings of the Annual Meeting - Institute of Navigation, 2007: 423-431. |
52 | 孙守明, 郑伟, 汤国建. 利用X射线脉冲星进行同步定位/授时的可观性分析[J]. 武汉大学学报·信息科学版, 2011, 36(9): 1068-1072. |
SUN S M, ZHENG W, TANG G J. Observability analysis of synchronous location and timing with X-ray pulsars[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1068-1072 (in Chinese). | |
53 | LIU J, MA J, TIAN J W, et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in Space Research, 2010, 46(11): 1409-1417. |
54 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research, 2013, 51(12): 2394-2404. |
55 | 王璐, 史晨曦, 李建勋, 等. 修正钟差和方位误差的X射线脉冲星导航[J]. 计算机测量与控制, 2018, 26(8): 205-207, 242. |
WANG L, SHI C X, LI J X, et al. X-ray pulsar navigation to correct for clock errors and direction errors[J]. Computer Measurement & Control, 2018, 26(8): 205-207, 242 (in Chinese). | |
56 | 武瑾媛, 房建成, 杨照华. 基于扩维卡尔曼滤波的火星探测器脉冲星相对导航方法[J]. 仪器仪表学报, 2013, 34(8): 1711-1716. |
WU J Y, FANG J C, YANG Z H. ASUKF based relative navigation method for Mars probe using pulsar[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1711-1716 (in Chinese). | |
57 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology, 2014, 36: 27-35. |
58 | 郑伟, 王奕迪, 张大鹏. 单探测器脉冲星导航系统误差补偿方法研究[C]∥ 2017中国自动化大会(CAC2017)暨国际智能制造创新大会(CIMIC2017)论文集, 2017: 336-343. |
ZHENG W, WANG Y D, ZHANG D P. Systematic biases compensation for X-ray pulsar-based navigation system using one sensor [C]∥ 2017 Chinese Automation Congress, 2017:336-343 (in Chinese). | |
59 | 宁晓琳, 桂明臻, 黄月清, 等. 基于TOA和TDTOA的增广状态脉冲星组合导航误差抑制方法[J]. 中国科学: 信息科学, 2021, 51(6): 971-984. |
NING X L, GUI M Z, HUANG Y Q, et al. TOA and TDTOA-based augmented state pulsar integrated navigation error suppression method[J]. Ssientia Sinica Informationis, 2021, 51(6): 971-984 (in Chinese). | |
60 | 褚永辉, 李茂登, 黄翔宇, 等. 基于自适应滤波的脉冲星导航方法研究[J]. 空间控制技术与应用, 2015, 41(6): 8-12. |
CHU Y H, LI M D, HUANG X Y, et al. Adaptive filter of X-ray pulsar-based navigation[J]. Aerospace Control and Application, 2015, 41(6): 8-12 (in Chinese). | |
61 | 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报, 2016, 37(4): 1305-1315. |
LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1305-1315 (in Chinese). | |
62 | 姜宇, 李晓宇, 金晶. 脉冲星导航系统观测量异常的改进UKF滤波算法研究[J]. 上海航天, 2017, 34(5): 23-29. |
JIANG Y, LI X Y, JIN J. Modified unscented Kalman filter algorithm for XNAV with abnormal measurement[J]. Aerospace Shanghai, 2017, 34(5): 23-29 (in Chinese). | |
63 | 胡腾戈, 武迪. 基于记忆衰减滤波的X射线脉冲星自主导航[J]. 力学与实践, 2019, 41(4): 382-387. |
HU T G, WU D. Autonomous navigation of probe by X-ray pulsars based on fading memory filtering[J]. Mechanics in Engineering, 2019, 41(4): 382-387 (in Chinese). | |
64 | 魏二虎, 张帅, Wei Jianan. 自适应滤波在环火探测器脉冲星自主导航中的应用[J]. 武汉大学学报·信息科学版, 2015, 40(5): 701-705. |
WEI E H, ZHANG S, WEI J N. Autonomous navigation of Mars probe using X-ray pulsar based on a modified AEKF[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 701-705 (in Chinese). | |
65 | 熊凯, 魏春岭, 李连升, 等. 基于扩维QLEKF的脉冲星/星间定向组合导航[J/OL].航空学报,[2022-01-11].. |
XIONG K, WEI C L, LI L S, et al. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF [J/OL]. Acta Aeronautica et Astronautica Sinica,[2022-01-11] (in Chinese). | |
66 | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J/OL]. 航空学报,[2022-01-11].. |
ZHANG D P, HUYAN Z P, LI H N. X-ray pulsar-based navigation results based on measured data [J/OL]. Acta Aeronautica et Astronautica Sinica,[2022-01-11]. (in Chinese). | |
67 | XIONG K, WEI C L, LIU L D. Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties[J]. Aerospace Science and Technology, 2012, 18(1): 15-24. |
68 | WANG Y D, ZHENG W, SUN S M, et al. Robust information filter based on maximum correntropy criterion[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5): 1126-1131. |
69 | WANG Y D, ZHENG W, AN X Y, et al. XNAV/CNS integrated navigation based on improved kinematic and static filter[J]. Journal of Navigation, 2013, 66(6): 899-918. |
70 | 许强, 崔洪亮, 丁邦平,等. 考虑有色噪声影响的脉冲星导航两级强跟踪差分滤波器[J/OL]. 航空学报,[2022-01-11].. |
XU Q, CUI H L, DING B P, et.al. Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise [J/OL] . Acta Aeronautica et Astronautica Sinica,[2022-01-11]. (in Chinese). | |
71 | 孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航研究[J]. 空间科学学报, 2010, 30(6): 579-583. |
SUN S M, ZHENG W, TANG G J. Research on X-ray pulsars/SINS integrated navigation[J]. Chinese Journal of Space Science, 2010, 30(6): 579-583 (in Chinese). | |
72 | 孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航中的钟差修正方法研究[J]. 国防科技大学学报, 2010, 32(6): 82-86. |
SUN S M, ZHENG W, TANG G J. A new clock error control algorithm of X-ray pulsars/SINS integrated navigation[J]. Journal of National University of Defense Technology, 2010, 32(6): 82-86 (in Chinese). | |
73 | LIU J, MA J, TIAN J W. Pulsar/CNS integrated navigation based on federated UKF[J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 675-681. |
74 | 刘劲, 马杰, 田金文. 利用X射线脉冲星和多普勒频移的组合导航[J]. 宇航学报, 2010, 31(6): 1552-1557. |
LIU J, MA J, TIAN J W. Integrated X-ray pulsar and Doppler shift navigation[J]. Journal of Astronautics, 2010, 31(6): 1552-1557 (in Chinese). | |
75 | LI J N, LI Y, LIN H M, et al. Autonomous integrated navigation for Jupiter probe transfer phase based on optical/pulsar[J]. Aerospace Shanghai (Chinese & English), 2020, 37(4): 1-9. |
76 | 杨博, 胡声曼, 孙晖, 等. 基于虚拟观测值的X射线单脉冲星星光组合导航[J]. 北京航空航天大学学报, 2016, 42(6): 1107-1115. |
YANG B, HU S M, SUN H, et al. Integrated single X-ray pulsar and starlight navigation based on virtual observation value[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1107-1115 (in Chinese). | |
77 | 喻子原, 刘劲, 宁晓琳, 等. 面向编队飞行的天文多普勒差分/脉冲星组合导航[J]. 深空探测学报, 2018, 5(3): 212-218. |
YU Z Y, LIU J, NING X L, et al. Celestial Doppler difference/pulsar for formation flying and its integrated navigation[J]. Journal of Deep Space Exploration, 2018, 5(3): 212-218 (in Chinese). | |
78 | WANG Y D, ZHENG W, SUN S M. X-ray pulsar-based navigation system/Sun measurement integrated navigation method for deep space explorer[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(10): 1843-1852. |
79 | WANG Y D, SUN J F, ZHENG W. Interstellar autonomous navigation system using X-ray pulsar and stellar angle measurement[J]. Applied Mechanics and Materials, 2012, 249-250: 231-240. |
80 | 王宏力, 许强, 何星, 等. 基于强跟踪滤波的单脉冲星/惯性/星光组合导航算法[J]. 兵器装备工程学报, 2018, 39(12): 101-105. |
WANG H L, XU Q, HE X, et al. Single pulsar/inertial/starlight integrated navigation algorithm based on suboptimal fading extended Kalman filter[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 101-105 (in Chinese). | |
81 | WANG Y D, ZHENG W, SUN S M, et al. Autonomous navigation method for low-thrust interplanetary vehicles[J]. Journal of Aerospace Engineering, 2016, 29(1): 1-9. |
82 | WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846. |
83 | WANG Y S, WANG Y D, ZHENG W, et al. Stellar angle-aided pulse phase estimation and its navigation application[J]. Aerospace, 2021, 8(9): 240. |
84 | LIU J, NING X L, MA X, et al. Direction/distance/velocity measurements deeply integrated navigation for Venus capture period[J]. Journal of Navigation, 2018, 71(4): 861-877. |
85 | WORDFORK D. Use of X-Ray pulsar for aiding GPS satellite orbit determination [D]. 2005. |
86 | XIONG K, WEI C L, LIU L D. The use of X-ray pulsars for aiding navigation of satellites in constellations[J]. Acta Astronautica, 2009, 64(4): 427-436. |
87 | LIU L, ZHENG W, TANG G J. Autonomous positioning of satellite constellations via X-ray pulsar measurements[J]. Journal of Navigation, 2013, 66(5): 671-682. |
88 | SUN H F, SU J Y, DENG Z W, et al. Grouping bi-Chi-squared method for pulsar navigation experiment using observations of Rossi X-ray timing explorer[J]. Chinese Journal of Aeronautics, 2022,. |
89 | GRAVEN J P, COLLINS J. SHEIKH S,et al. XNAV for deep space navigation[C]∥ 31th Annual AAS Guidance and Control Conference, 2008. |
90 | GRAVEN P, COLLINS J, SHEIKH S, et al. Spacecraft navigation using X-Ray pulsars[C]∥ 7th International ESA Conference on Guidance, Navigation & Control Systems, 2008. |
91 | 宁晓琳, 马辛, 张学亮, 等. 基于ASUKF的火星探测器脉冲星自主导航方法[J]. 北京航空航天大学学报, 2012, 38(1): 22-27. |
NING X L, MA X, ZHANG X L, et al. Autonomous pulsars navigation method based on ASUKF for Mars probe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1): 22-27 (in Chinese). | |
92 | WANG W B, SHU L Z, LIU J K, et al. Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors[J]. Navigation, 2019, 66(4): 781-802. |
93 | LIU J K, WANG W B, ZHANG H, et al. Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X‐ray pulsars[J]. Navigation, 2021, 68(4): 687-708 |
94 | 郑伟, 张璐, 王奕迪. 基于星联网的深空自主导航方案设计[J]. 深空探测学报, 2017, 4(1): 31-37. |
ZHENG W, ZHANG L, WANG Y D. Design of deep space autonomous navigation system based on spacecraft networking[J]. Journal of Deep Space Exploration, 2017, 4(1): 31-37 (in Chinese). | |
95 | 信世军. 星联网基准系统设计及其自主导航方法研究[D]. 长沙: 国防科技大学, 2017. |
XIN S J. Design for the absolute reference system of the Internet of spacecraft and research on its autonomous navigation methods[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). |
[1] | 郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航空间试验进展与展望[J]. 航空学报, 2024, 45(6): 28843-028843. |
[2] | 王禹淞, 王奕迪, 郑伟. 太阳信息辅助的脉冲相位估计方法及导航应用[J]. 航空学报, 2023, 44(S1): 727651-727651. |
[3] | 李连升, 梅志武, 谢军, 姜坤, 石永强, 曹振, 左富昌. X射线聚焦光学在脉冲星探测领域的应用[J]. 航空学报, 2023, 44(3): 528286-528286. |
[4] | 周庆勇, 魏子卿, 雷耀虎, 刘思伟, 郝晓龙, 吴富梅, 杨彦佶, 强鹏飞. 面向脉冲星深空基准建立的X射线望远镜及发展设想[J]. 航空学报, 2023, 44(3): 526608-526608. |
[5] | 熊凯, 魏春岭, 李连升, 周鹏. 基于扩维QLEKF的脉冲星/星间定向组合导航[J]. 航空学报, 2023, 44(3): 526232-526232. |
[6] | 徐国栋, 张丹蕾, 徐振东. 脉冲星特征频率信号的到达时间处理方法[J]. 航空学报, 2023, 44(3): 526185-526185. |
[7] | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023, 44(3): 526510-526510. |
[8] | 周庆勇, 闫林丽, 李连升, 冯来平, 石永强, 孙鹏飞, 方柳, 王龙. XPNAV⁃1卫星聚焦型X射线脉冲星望远镜在轨稳定性分析[J]. 航空学报, 2023, 44(3): 526610-526610. |
[9] | 童明雷, 韩孟纳, 杨廷高, 赵成仕, 朱幸芝. 利用Crab脉冲星X射线观测校准星载原子钟频率[J]. 航空学报, 2023, 44(3): 526566-526566. |
[10] | 盛立志, 郑伟, 苏桐, 张大鹏, 王奕迪, 杨向辉, 徐能, 李治泽. “天枢Ⅱ号”X射线脉冲星导航动态模拟系统及实验验证[J]. 航空学报, 2023, 44(3): 526656-526656. |
[11] | 赵成仕, 高玉平, 童明雷, 朱幸芝, 罗近涛. 导航脉冲星星历表时空参考系统一性问题[J]. 航空学报, 2023, 44(3): 526580-526580. |
[12] | 苏剑宇, 方海燕, 高敬敬, 赵良. X射线脉冲星导航的最优观测周期确定[J]. 航空学报, 2023, 44(3): 526597-526597. |
[13] | 印俊秋, 刘云鹏, 汤晓斌. 基于仿脉冲星X射线信标的航天器定位方法[J]. 航空学报, 2023, 44(3): 526596-526596. |
[14] | 姜坤, 焦文海, 郝晓龙, 刘莹, 王奕迪, 张新源, 国际. 脉冲星试验01星科学试验与成果[J]. 航空学报, 2023, 44(3): 526611-526611. |
[15] | 韩大炜, 郑世界, 庹攸隶, 葛明玉, 宋黎明, 李新乔, 文向阳, 熊少林. 利用GECAM卫星Crab脉冲星观测数据的定轨分析[J]. 航空学报, 2023, 44(3): 526641-526641. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学