1 |
SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63.
|
2 |
帅平, 李明, 陈绍龙. X射线脉冲星导航系统原理与方法[M]. 北京: 中国宇航出版社, 2009.
|
|
SHUAI P, LI M, CHEN S L. Principle and method of X-ray pulsar navigation system[M]. Beijing: China Aerospace Publishing House, 2009 (in Chinese).
|
3 |
WOOD K S, DETERMAN J R, RAY P S, et al. Using the Unconventional Stellar Aspect (USA) experiment on ARGOS to determine atmospheric parameters by X-ray occultation[C]∥ International Symposium on Optical Science and Technology. San Francisco: SPIE, 2002: 258-265.
|
4 |
WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results: AIAA-2018-2538[R]. Reston: AIAA, 2018.
|
5 |
帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287.
|
|
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese).
|
6 |
李连升, 梅志武, 吕政欣, 等. 掠入射聚焦型X射线脉冲星望远镜及在轨数据分析[J]. 兵器装备工程学报, 2017, 38(12): 175-179.
|
|
LI L S, MEI Z W, LYU Z X, et al. Grazing incidence focusing X-ray pulsar telescope and analysis of In-orbit observation data[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 175-179 (in Chinese).
|
7 |
张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报, 2018, 39(4): 411-417.
|
|
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese).
|
8 |
周庆勇, 魏子卿, 姜坤, 等. 一种聚焦型X射线探测器在轨性能标定方法[J]. 物理学报, 2018, 67(5): 050701.
|
|
ZHOU Q Y, WEI Z Q, JIANG K, et al. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar[J]. Acta Physica Sinica, 2018, 67(5): 050701 (in Chinese).
|
9 |
HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003.
|
10 |
周庆勇, 魏子卿, 姜坤, 等. 面向脉冲星导航的聚焦型X射线探测器测试标定方法研究[J]. 光子学报, 2020, 49(6): 27-39.
|
|
ZHOU Q Y, WEI Z Q, JIANG K, et al. Research on the test and calibration method of a focusing X-ray detector for pulsar navigation[J]. Acta Photonica Sinica, 2020, 49(6): 27-39 (in Chinese).
|
11 |
周庆勇, 盛立志, 魏子卿, 等. 微通道板型X射线探测器的脉冲信号探测能力实验分析[J]. 光子学报, 2018, 47(9): 175-185.
|
|
ZHOU Q Y, SHENG L Z, WEI Z Q, et al. Experimental analysis of pulse signal detection capability of the MCP X-ray detector[J]. Acta Photonica Sinica, 2018, 47(9): 175-185 (in Chinese).
|
12 |
TURNER M J L, THOMAS H D, PATCHETT B E, et al. The large area counter on Ginga[J]. Publications of the Astronomical Society of Japan, 1989, 41: 345-372.
|
13 |
JAHODA K, MARKWARDT C B, RADEVA Y, et al. Calibration of the Rossi X-ray timing explorer proportional counter array[J]. The Astrophysical Journal Letters Supplement Series, 2006, 163(2): 401-423.
|
14 |
SHAPOSHNIKOV N, JAHODA K, MARKWARDT C, et al. Advances in therxteproportional counter array calibration: Nearing the statistical limit[J]. The Astrophysical Journal Letters, 2012, 757(2): 159.
|
15 |
GORENSTEIN P. Grazing incidence telescopes for X-ray astronomy[J]. Optical Engineering, 2012, 51(1): 011010.
|
16 |
ZHANG W W, BISKACH M P, BLAKE P N, et al. High resolution and high throughput X-ray optics for future astronomical missions[C]∥ SPIE Optical Engineering + Applications. San Diego: SPIE, 2013: 231-243.
|
17 |
黎月明, 邓楼楼, 杨健, 等. 电铸镍Wolter-I型光学系统制造技术发展综述[J]. 空间控制技术与应用, 2020, 46(2): 8-15.
|
|
LI Y M, DENG L L, YANG J, et al. Manufacturing technology and application development of electroformed nickel Wolter-I optical system[J]. Aerospace Control and Application, 2020, 46(2): 8-15 (in Chinese).
|
18 |
李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报, 2018, 54(11): 49-60.
|
|
LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering, 2018, 54(11): 49-60 (in Chinese).
|
19 |
刘宏颖, 穆宝忠, 王占山. Wolter-Ⅰ型X射线天文望远镜的光学设计[J]. 光学仪器, 2012, 34(6): 31-36.
|
|
LIU H Y, MU B Z, WANG Z S. Optical design of Wolter-Ⅰ X-ray astronomical telescope[J]. Optical Instruments, 2012, 34(6): 31-36 (in Chinese).
|
20 |
李保权, 朱光武, 王世金, 等. 太阳X-EUV成像望远镜[J]. 地球物理学报, 2005, 48(2): 235-242.
|
|
LI B Q, ZHU G W, WANG S J, et al. The solar X-EUV imaging telescope[J]. Chinese Journal of Geophysics, 2005, 48(2): 235-242 (in Chinese).
|
21 |
李保权. 静止轨道卫星太阳X-EUV成像望远镜[D]. 北京: 中国科学院研究生院, 2004.
|
|
LI B Q. The solar X-EUV imaging telescope aboard the geostationary orbit satellite[D]. Beijng: Graduate School of Chinese Academy of Sciences, 2004 (in Chinese).
|
22 |
王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学 精密工程, 2021, 29(8): 1839-1846.
|
|
WANG B, YANG Y J, WANG D L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Optics and Precision Engineering, 2021, 29(8): 1839-1846 (in Chinese).
|
23 |
茹巧巧. 基于条纹反射法的X射线嵌套镜模具面形检测[D]. 苏州: 苏州大学, 2019.
|
|
RU Q Q. Shape measurement of X-ray nested mirror moulds based on stripe reflection method[D]. Suzhou: Soochow University, 2019 (in Chinese).
|
24 |
DE CHAMBURE D, LAINE R, VAN KATWIJK K, et al. Lessons learned from the development of the XMM optics[C]∥ Optical Systems Design and Production. San Francisco: SPIE, 1999: 2-17.
|
25 |
CITTERIO O, CONCONI P, GHIGO M, et al. Development of soft and hard X-ray optics for astronomy[C]∥ International Symposium on Optical Science and Technology. San Francisco: SPIE, 2000: 43-56.
|
26 |
PARESCHI G, CITTERIO O, GHIGO M, et al. Replication by Ni electroforming approach to produce the Con-X/HXT hard X-ray mirrors[C]∥ Astronomical Telescopes and Instrumentation. San Francisco: SPIE, 2003: 528-537.
|
27 |
ATKINS C, RAMSEY B, KILARU K, et al. X-ray optic developments at NASA's MSFC[C]∥ SPIE Optics + Optoelectronics. San Francisco: SPIE, 2013: 185-193.
|
28 |
ZHANG W W, BISKACH M P, BLAKE P N, et al. Next generation astronomical X-ray optics: High angular resolution, light weight, and low production cost[C]∥ SPIE Astronomical Telescopes + Instrumentation. San Francisco: SPIE, 2012: 206-214.
|
29 |
GHIGO M, PROSERPIO L, BASSO S, et al. Slumping technique for the manufacturing of a representative X-ray grazing incidence mirror module for future space missions[C]∥ SPIE Optifab. San Francisco: SPIE, 2013: 417-430.
|
30 |
CRAIG W W, AN H J, BLAEDEL K L, et al. Fabrication of the NuSTAR flight optics[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2011: 151-164.
|
31 |
KOGLIN J E, AN H J, BLAEDEL K L, et al. NuSTAR hard X-ray optics design and performance[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2009: 107-114.
|
32 |
GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition Explorer (NICER): An Explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥ SPIE Astronomical Telescopes + Instrumentation. San Francisco: SPIE, 2012: 322-329.
|
33 |
OKAJIMA T, SOONG Y, BALSAMO E R, et al. Performance of NICER flight X-ray concentrator[C]∥ SPIE Astronomical Telescopes + Instrumentation. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. San Francisco:SPIE,2016: 1495-1501.
|
34 |
PETRE R, SERLEMITSOS P J. Conical imaging mirrors for high-speed X-ray telescopes[J]. Applied Optics, 1985, 24(12): 1833.
|
35 |
AWAKI H, OGASAKA Y, KUNIEDA H, et al. Current status of the Astro-H X-ray Telescope system[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2009: 28-35.
|
36 |
BALSAMO E, GENDREAU K, ARZOUMANIAN Z, et al. Concept study X-ray testing for NICER's X-ray concentrators[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2013: 587-594.
|
37 |
SERLEMITSOS P J. Conical foil X-ray mirrors: Performance and projections[J]. Applied Optics, 1988, 27(8): 1447-1452.
|