收稿日期:
2022-08-15
修回日期:
2022-08-29
接受日期:
2022-10-09
出版日期:
2023-08-25
发布日期:
2022-11-17
通讯作者:
刘汉儒
E-mail:hrliu@nwpu.edu.cn
基金资助:
Hanru LIU1(), Nanshu CHEN1, Yu LIU2, Zhijie HU1
Received:
2022-08-15
Revised:
2022-08-29
Accepted:
2022-10-09
Online:
2023-08-25
Published:
2022-11-17
Contact:
Hanru LIU
E-mail:hrliu@nwpu.edu.cn
Supported by:
摘要:
流动控制是空气动力学中的重要研究领域,这一技术将成为未来飞行器及动力装置气动增益设计的新手段。来源于仿生学的多孔介质处理是一种方兴未艾的被动流动控制技术,其在流动控制和气动噪声降低方面具有重要潜力。首先,对多孔介质应用于流动及噪声控制的起源与动机进行了回顾;其次,阐述了不同多孔介质的构型和模型化方法;随后,基于国内外相关研究工作,探讨了多孔介质在钝体外流、孤立叶片、旋转机械流动调控和气动噪声降低方面的结构设计和应用效果。目前国内外的研究表明,多孔介质在合适的结构设计、材料物性和工况下具有较好的流动改善和降噪能力。但是,目前还没有成熟的设计理论指导应用以及更广泛的适用条件研究。跨尺度的流动耦合研究和涡动力学研究对于深入理解多孔介质的流动根源改变和降噪机制至关重要,进一步的优化设计多孔介质内部构型、表观参数和设计形式是这种流动控制降噪技术未来应用于工程而亟需开展的重要工作。
中图分类号:
刘汉儒, 陈南树, 刘宇, 胡之颉. 多孔介质流动控制及气动降噪研究进展[J]. 航空学报, 2023, 44(16): 27923-027923.
Hanru LIU, Nanshu CHEN, Yu LIU, Zhijie HU. Review of porous media used in flow control and aerodynamic noise reduction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 27923-027923.
表1
多孔介质应用于翼型自噪声控制的典型设计
位置 | 代表文献 | 年份 | 典型结构设计 |
---|---|---|---|
前缘多孔 | Roger等[ Fink和Bailey[ Bowen等[ Wang等[ | 2013 1980 2020 2022 | |
尾缘多孔 | Howe[ Khorrami和Choudhari [ Fassmann等[ Jaworski和Peake [ Fink和Bailey [ Herr和Reichenberger [ Zhou等 [ Wang等[ | 1979 2003 2015 2013 1980 2011 2021 2021 | |
翼身 | Revell等[ Geyer等[ | 1997 2010/2011 | |
襟翼侧缘 | Angland等[ | 2009 |
1 | MEHRYAN S A M, KASHKOOLI F M, SOLTANI M. Comprehensive study of the impacts of surrounding structures on the aero-dynamic performance and flow characteristics of an outdoor unit of split-type air conditioner[J]. Building Simulation, 2018, 11(2): 325-337. |
2 | 钟思阳, 黄迅. 气动声学和流动噪声发展综述: 致初学者[J]. 空气动力学学报, 2018, 36(3): 363-371. |
ZHONG S Y, HUANG X. A review of aeroacoustics and flow-induced noise for beginners[J]. Acta Aerodynamica Sinica, 2018, 36(3): 363-371 (in Chinese). | |
3 | 孙晓峰,周盛. 气动声学[M]. 北京: 国防工业出版社, 1994. |
SUN X F, ZHOU S. Aeroacoustics[M]. Beijing: National Defense Industry Press, 1994 (in Chinese). | |
4 | 毛义军, 祁大同. 叶轮机械气动噪声的研究进展[J]. 力学进展, 2009, 39(2): 189-202. |
MAO Y J, QI D T. Review of aerodynamic noise in turbomachinery[J]. Advances in Mechanics, 2009, 39(2): 189-202 (in Chinese). | |
5 | ZHAO K, OKOLO P, NERI E, et al. Noise reduction technologies for aircraft landing gear:A bibliographic review[J]. Progress in Aerospace Sciences, 2020, 112: 100589. |
6 | MOREAU S. A review of turbomachinery noise: From analytical models to high-fidelity simulations[M]∥RADESPIEL R, SEMAAN R. Fundamentals of high lift for future civil aircraft. Cham: Springer, 2021: 579-595. |
7 | 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010. |
QIAO W Y. Aeroacoustics of aero-engine[M]. Beijing: Beihang University Press, 2010 (in Chinese). | |
8 | PEAKE N, PARRY A B. Modern challenges facing turbomachinery aeroacoustics[J]. Annual Review of Fluid Mechanics, 2012, 44: 227-248. |
9 | Environmental Protection Agency.Review and analysis of present and planned FAA noise regulatory actions and their consequence regarding aircraft and airport operations:NTID 73.6[R]. Washington, D.C.: Environmental Protection Agency, 1973. |
10 | HILEMAN J I. FAA research on aviation noise [C]∥The 32nd Annual Aviation Noise and Emissions Symposium. 2018. |
11 | 赵鲲, 梁俊彪, BELYAEV I, 等. 民用飞机起落架噪声及其控制技术研究进展[J]. 航空学报, 2022, 43(8): 026996. |
ZHAO K, LIANG J B, BELYAEV I, et al. Review of civil airplane landing gear noise study and its control approaches[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 026996 (in Chinese). | |
12 | The Boeing Company. 787 Dreamliner by design[EB/OL]. [2022-08-15].. |
13 | 颜维琦,曹继军. 我国自主研制C919大型客机圆满首飞[N].光明日报,2017-05-06(1). |
YAN W Q, CAO J J. China’s self-developed C919 airliner successfully made its first flight[N]. Guangming Daily, 2017-05-06(1). | |
14 | TALOTTE C. Aerodynamic noise: A critical survey[J]. Journal of Sound and Vibration, 2000, 231(3): 549-562. |
15 | KING III W F. A précis of developments in the aeroacoustics of fast trains[J]. Journal of Sound and Vibration, 1996, 193(1): 349-358. |
16 | 司海青, 王同光, 吴晓军. 参数对风力机气动噪声的影响研究[J]. 空气动力学学报, 2014, 32(1): 131-135. |
SI H Q, WANG T G, WU X J. Effects of parameters on aerodynamic noise from wind turbine[J]. Acta Aerodynamica Sinica, 2014, 32(1): 131-135 (in Chinese). | |
17 | DOOLAN C, MOREAU D J, BROOKS L A. Wind turbine noise mechanisms and some concepts for its control[J]. Acoustics Australia, 2012, 40(1): 7-13. |
18 | MOREAU D J, BROOKS L A, DOOLAN C J. On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate Reynolds number[C]∥ 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Reston: AIAA, 2012. |
19 | YOO S P, LEE D Y. Time-delayed phase-control for suppression of the flow-induced noise from an open cavity[J]. Applied Acoustics, 2008, 69(3): 215-224. |
20 | GAD-EL-HAK M. Flow control: Passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000. |
21 | AKKERMANS R A D, STUERMER A, DELFS J W. Active flow control for interaction noise reduction of contra-rotating open rotors[J]. AIAA Journal, 2016, 54(4): 1413-1423. |
22 | 吴亚东, 竺晓程, 杜朝辉. 静子尾缘喷气后尾迹与动叶干涉噪声研究[J]. 工程热物理学报, 2009, 30(9): 1482-1484. |
WU Y D, ZHU X C, DU Z H. Investigation on interaction noise between stator wake and rotor with trailing edge blowing[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1482-1484 (in Chinese). | |
23 | HU Z J, LIU H R. Investigation on vortex shedding and noise control of flow around cylinder by blowing and suction[C]∥ 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-10. |
24 | 徐枫. 结构流固耦合振动与流动控制的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
XU F. Numerical simulation of fluid-solid coupling vibration and flow control of structures[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). | |
25 | YOU D, CHOI H, CHOI M R, et al. Control of flow-induced noise behind a circular cylinder using splitter plates[J]. AIAA Journal, 1998, 36(11): 1961-1967. |
26 | SUKRI MAT ALI M, DOOLAN C J, WHEATLEY V. The sound generated by a square cylinder with a splitter plate at low Reynolds number[J]. Journal of Sound and Vibration, 2011, 330(15): 3620-3635. |
27 | SHI L, WANG W Q, ZHANG C C, et al. The effect of bionic V-ring surface on the aerodynamic noise of a circular cylinder[J]. Applied Mechanics and Materials, 2013, 461: 751-762. |
28 | ÜNAL U O, ATLAR M. An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder[J]. Experiments in Fluids, 2010, 48(6): 1059-1079. |
29 | HEINE B, SCHWERMER T, RAFFEL M. The effect of vortex generators on the flow around a circular cylinder[C]∥15th International Symposium on Application Laser Techniques to Fluid Mechanics. 2010. |
30 | 于彦泽, 刘景飞, 蒋增龑, 等. 大型飞机后体流动控制及减阻机理研究[J]. 空气动力学学报, 2011, 29(5): 640-644. |
YU Y Z, LIU J F, JIANG Z Y, et al. The investigation of flow control and drag reduction mechanism for transport airplane aft-body[J]. Acta Aerodynamica Sinica, 2011, 29(5): 640-644 (in Chinese). | |
31 | BACHMANN T, BLAZEK S, ERLINGHAGEN T, et al. Barn owl flight [M]∥TROPEA C, BLECKMANN H. Nature-inspired fluid mechanics. Berlin, Heidelberg: Springer, 2012: 101-117. |
32 | 仝帆, 乔渭阳, 王良锋, 等. 仿生学翼型尾缘锯齿降噪机理[J]. 航空学报, 2015, 36(9): 2911-2922. |
TONG F, QIAO W Y, WANG L F, et al. Noise reduction mechanism of bionic airfoil trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2911-2922 (in Chinese). | |
33 | 仝帆, 乔渭阳, 纪良, 等. 尾缘锯齿降低叶栅噪声的数值模拟[J]. 航空动力学报, 2016, 31(4): 894-902. |
TONG F, QIAO W Y, JI L, et al. Numerical simulation on noise reduction for the cascade with trailing edge serrations[J]. Journal of Aerospace Power, 2016, 31(4): 894-902 (in Chinese). | |
34 | WANG Y, ZHAO K, LU X Y, et al. Bio-inspired aerodynamic noise control: A bibliographic review[J]. Applied Sciences, 2019, 9(11): 2224. |
35 | 陈坤. 三种鸮形态学、飞行运动学特征规律及其仿生研究[D]. 长春: 吉林大学, 2012. |
CHEN K. Morphology, flight kinematics and bionics of silent flight owl[D]. Changchun: Jilin University, 2012 (in Chinese). | |
36 | GEYER T, SARRADJ E, FRITZSCHE C. Nature-inspired porous airfoils for sound reduction [M]∥TROPEA C, BLECKMANN H. Nature-inspired fluid mechanics. Berlin, Heidelberg: Springer, 2012: 355-370. |
37 | JOSLIN R D, THOMAS R H, CHOUDHARI M M. Synergism of flow and noise control technologies[J]. Progress in Aerospace Sciences, 2005, 41(5): 363-417. |
38 | 燕群, 薛东文, 高翔, 等. 飞机短舱声衬声学性能实验技术[J]. 航空学报, 2022, 43(6): 526810. |
YAN Q, XUE D W, GAO X, et al. Acoustic performance experimental technology of aircraft nacelle acoustic liner[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526810 (in Chinese). | |
39 | 霍施宇, 杨嘉丰, 邓云华, 等. 全尺寸短舱排气道声衬声学设计与试验验证[J]. 航空学报, 2022, 43(6): 526736. |
HUO S Y, YANG J F, DENG Y H, et al. Acoustic design and experimental verification of full-scale nacelle exhaust duct liner[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526736 (in Chinese). | |
40 | 盛美萍, 王敏庆, 孙进才. 噪声与振动控制技术基础[M]. 北京:科学出版社, 2001. |
SHENG M P, WANG M Q, SUN J C. Fundamentals of noise and vibration control technology [M]. Beijing: Science Press, 2001 (in Chinese). | |
41 | NIELD D A, BEJAN A. Convection in porous media[M]. New York: Springer New York, 2013. |
42 | 吕兆华. 泡沫型多孔介质等效导热系数的计算[J]. 南京理工大学学报(自然科学版), 2001, 25(3): 257-261. |
LYU Z H. Calculation of effective thermal conductivity of foam porous media[J]. Journal of Nanjing University of Science and Technology, 2001, 25(3): 257-261 (in Chinese). | |
43 | HUTTER C, ALLEMANN C, KUHN S, et al. Scalar transport in a milli-scale metal foam reactor[J]. Chemical Engineering Science, 2010, 65(10): 3169-3178. |
44 | BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. Dordrecht: Kluwer Academic Publishers, 1990. |
45 | ASHBY M F. Metal foams: A design guide[M]. Oxford: Butterworth-Heinemann, 2000. |
46 | KRISHNAN S, MURTHY J Y, GARIMELLA S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer, 2006, 128(8): 793-799. |
47 | MOHSEN KARIMIAN S A, STRAATMAN A G. CFD study of the hydraulic and thermal behavior of spherical-void-phase porous materials[J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 292-305. |
48 | ANNAPRAGADA S R, MURTHY J Y, GARIMELLA S V. Permeability and thermal transport in compressed open-celled foams[J]. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54(1): 1-22. |
49 | QU Z G, WANG T S, TAO W Q, et al. A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid[J]. Heat and Mass Transfer, 2012, 48(8): 1385-1395. |
50 | XU C, MAO Y J, HU Z W. Numerical study of pore-scale flow and noise of an open cell metal foam[J]. Aerospace Science and Technology, 2018, 82/83: 185-198. |
51 | ARCONDOULIS E J G, LIU Y, LI Z Y, et al. Structured porous material design for passive flow and noise control of cylinders in uniform flow[J]. Materials, 2019, 12(18): 2905. |
52 | ARCONDOULIS E J G, GEYER T F, LIU Y. An acoustic investigation of non-uniformly structured porous coated cylinders in uniform flow[J]. The Journal of the Acoustical Society of America, 2021, 150(2): 1231-1242. |
53 | ARCONDOULIS E J G, GEYER T F, LIU Y. An investigation of wake flows produced by asymmetrically structured porous coated cylinders[J]. Physics of Fluids, 2021, 33(3): 037124. |
54 | KOPANIDIS A, THEODORAKAKOS A, GAVAISES E, et al. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2539-2550. |
55 | BOWEN L, CELIK A, AZARPEYVAND M, et al. On the use of tailored permeable surfaces for turbulence interaction noise control:AIAA-2020-2530[R].Reston: AIAA, 2020. |
56 | ZHANG M H, CHONG T P. Experimental investigation of the impact of porous parameters on trailing-edge noise[J]. Journal of Sound and Vibration, 2020, 489: 115694. |
57 | RUBIO CARPIO A, AVALLONE F, RAGNI D, et al. Quantitative criteria to design optimal permeable trailing edges for noise abatement[J]. Journal of Sound and Vibration, 2020, 485: 115596. |
58 | GAVAISES M, KOPANIDIS A, THEODORAKAKOS A, et al. Numerical simulation of fluid flow and heat transfer with direct modelling of microscale geometry[C]∥Proceedings of the 5th European Thermal-Sciences Conference. 2008. |
59 | BOOMSMA K, POULIKAKOS D, VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow, 2003, 24(6): 825-834. |
60 | WEN K B, ARCONDOULIS E J G, LI Z Y, et al. Structure resolved simulations of flow around porous coated cylinders based on a simplified pore-scale model[J]. Aerospace Science and Technology, 2021, 119: 107181. |
61 | ARCONDOULIS E, LIU Y, YANG Y N, et al. Three dimensional internal and near-wall flow features of a structured porous coated cylinder:AIAA-2022-3038[R]. Reston: AIAA, 2022. |
62 | WHITAKER S. The Forchheimer equation: A theoretical development[J]. Transport in Porous Media, 1996, 25(1): 27-61. |
63 | XU W G, ZHANG H T, YANG Z M,et al. Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials[J]. Chemical Engineering Journal, 2008, 140(1/2/3):562-569. |
64 | BEJAN A. Convection heat transfer[M]. 4th ed. Hoboken: Wiley, 2013. |
65 | SHARMA S, SIGINER D A. Permeability measurement methods in porous media: A review[C]∥ Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition. New York: ASME, 2008: 179-200. |
66 | DELLI M L, GROZIC J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9. |
67 | MOUSAVI S M R, JAFARI S, SCHAFFIE M, et al. Experimental study and modeling permeability damage in porous media due to asphaltene deposition[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107396. |
68 | WAGNER A, EGGENWEILER E, WEINHARDT F, et al. Permeability estimation of regular porous structures: A benchmark for comparison of methods[J]. Transport in Porous Media, 2021, 138(1): 1-23. |
69 | FAND R M, STEINBERGER T E, CHENG P. Natural convection heat transfer from a horizontal cylinder embedded in a porous medium[J]. International Journal of Heat and Mass Transfer, 1986, 29(1): 119-133. |
70 | FORCHHEIMER P H. Wasserbewegung durch Boden[J].Zeitschrift fur Acker und Pflanzenbau, 1901, 49: 1736-1749. |
71 | DULLIEN F A L. Porous media: Fluid transport and pore structure[M]. New York: Academic Press, 1979. |
72 | ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
73 | TAMAYOL A, WONG K W, BAHRAMI M. Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number[J]. Physical Review E, 2012, 85(2): 026318. |
74 | TAMAYOL A, BAHRAMI M. Transverse permeability of fibrous porous media[J]. Physical Review E, 2011, 83(4): 046314. |
75 | CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Boulder:University of Colorado, 1998. |
76 | HIGDON J J L, FORD G D. Permeability of three-dimensional models of fibrous porous media[J]. Journal of Fluid Mechanics, 1996, 308: 341-361. |
77 | RAHLI O, TADRIST L, MISCEVIC M, et al. Fluid flow through randomly packed monodisperse fibers: The Kozeny-Carman parameter analysis[J]. Journal of Fluids Engineering, 1997, 119(1): 188-192. |
78 | CARMAN P C. The determination of the specific surface of powders I[J].The Journal of the Society of Chemical Industries, 1938, 57: 225-234. |
79 | BHATTACHARYA A, CALMIDI V V, MAHAJAN R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. |
80 | JACKSON G W, JAMES D F. The hydrodynamic resistance of hyaluronic acid and its contribution to tissue permeability[J]. Biorheology, 1982, 19(1/2): 317-330. |
81 | BERGELIN O P, BROWN G A, HULL H L, et al. Heat transfer and fluid friction during viscous flow across banks of tubes—Ⅲ: A study of tube spacing and tube size[J]. Journal of Fluids Engineering, 1950, 72(6): 881-888. |
82 | GHADDAR C K. On the permeability of unidirectional fibrous media: A parallel computational approach[J]. Physics of Fluids, 1995, 7(11): 2563-2586. |
83 | PAPATHANASIOU T D, MARKICEVIC B, DENDY E D. A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media[J]. Physics of Fluids, 2001, 13(10): 2795-2804. |
84 | BRUNEAU C H, MORTAZAVI I. Passive control of the flow around a square cylinder using porous media[J]. International Journal for Numerical Methods in Fluids, 2004, 46(4): 415-433. |
85 | BHATTACHARYYA S, SINGH A K. Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder[J]. International Journal for Numerical Methods in Fluids, 2011, 65(6): 683-698. |
86 | HUNTER C A, VIKEN S A, WOOD R M, et al. Advanced aerodynamic design of passive porosity control effectors[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
87 | SUEKI T, IKEDA M, TAKAISHI T,et al. Application of porous material to reduce aerodynamic noise caused by a high-speed pantograph[C]∥Proceedings of INTER-NOISE and NOISE-CON Congress and Conference.2008. |
88 | SUEKI T, IKEDA M, TAKAISHI T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs[J]. Quarterly Report of RTRI, 2009, 50(1): 26-31. |
89 | SUEKI T, TAKAISHI T, IKEDA M, et al. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamics Research, 2010, 42(1): 015004. |
90 | NAITO H, FUKAGATA K. Numerical simulation of flow around a circular cylinder having porous surface[J]. Physics of Fluids, 2012, 24(11): 117102. |
91 | GEYER T F, SARRADJ E. Circular cylinders with soft porous cover for flow noise reduction[J]. Experiments in Fluids, 2016, 57(3): 30. |
92 | AGUIAR J, YAO H D, LIU Y. Passive flow/noise control of a cylinder using metal foam[C]∥23rd International Congress on Sound and Vibration. 2016. |
93 | LIU F, GUO H, HU T X, et al. Experimental investigation on the aeroacoustics of circular cylinders covered with metal foam:AIAA-2016-2715[R]. Reston: AIAA, 2016. |
94 | LIU H R, WEI J J, QU Z G. Prediction of aerodynamic noise reduction by using open-cell metal foam[J]. Journal of Sound and Vibration, 2012, 331(7): 1483-1497. |
95 | LIU H R, WEI J J, QU Z G. The interaction of porous material coating with the near wake of bluff body[J]. Journal of Fluids Engineering, 2014, 136(2): 021302. |
96 | LIU H R, WEI J J. On the role of surface permeability for the control of flow around a circular cylinder[J]. Journal of Vibroengineering, 2016, 18(8): 5406-5415. |
97 | RUCK B, KLAUSMANN K, WACKER T. The flow around circular cylinders partially coated with porous media[C]∥AIP Conference Proceedings:1st International Conference on Achieving the Sustainable Development Coals. 2012: 49-54. |
98 | HU Z J, LIU H R, CHEN N S, et al. Vortex shedding noise and flow mode analysis of cylinder with full/partial porous coating[J]. Aerospace Science and Technology, 2020, 106: 106154. |
99 | ZHANG P K, LIU Y, LI Z Y, et al. Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings[J]. Aerospace Science and Technology, 2020, 107: 106308. |
100 | LIU H R, AZARPEYVAND M, WEI J J, et al. Tandem cylinder aerodynamic sound control using porous coating[J]. Journal of Sound and Vibration, 2015, 334: 190-201. |
101 | LIU H R, AZARPEYVAND M. Passive control of tandem cylinders flow and noise using porous coating:AIAA-2016-2905[R].Reston: AIAA, 2016. |
102 | LIU H R, WANG Y G, WEI J J, et al. The importance of controlling the upstream body wake in tandem cylinders system for noise reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 517-531. |
103 | HOWE M S. On the added mass of a perforated shell, with application to the generation of aerodynamic sound by a perforated trailing edge[J]. Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1979, 365(1721): 209-233. |
104 | REVELL J D, KUNTZ H L, BALENA F J,et al. Trailing-edge flap noise reduction by porous acoustic treatment[C]∥3rd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 1997. |
105 | KHORRAMI M, CHOUDHARI M. Application of passive porous treatment to slat trailing edge noise:NASA/TM-2003-212416[R].Washington,D.C.:NASA, 2003. |
106 | ANGLAND D, ZHANG X, MOLIN N. Measurements of flow around a flap side edge with porous edge treatment[J]. AIAA Journal, 2009, 47(7): 1660-1671. |
107 | GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2): 291-308. |
108 | GEYER T. Trailing edge noise generation of porous airfoils[D]. Cottbus: Brandenburg Technical University of Cottbus, 2011. |
109 | WANG Y, HAO N S, LU X Y, et al. Airfoil self-noise reduction by gradient distributed porous trailing edges[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021075. |
110 | ROGER M, SCHRAM C, DE SANTANA L. Reduction of airfoil turbulence-impingement noise by means of leading-edge serrations and/or porous material:AIAA- 2013-2108[R].Reston: AIAA, 2013. |
111 | FINK M R, BAILEY D A. Model tests of airframe noise reduction concepts[C]∥6th Aeroacoustics Conference. Reston: AIAA, 1980. |
112 | WANG Y, TONG F, CHEN Z W, et al. Rod-airfoil interaction noise reduction using gradient distributed porous leading edges[J]. Applied Sciences, 2022, 12(10): 4941. |
113 | HERR M, REICHENBERGER J. In search of airworthy trailing-edge noise reduction means:AIAA-2011-2780[R].Reston: AIAA, 2011. |
114 | ZHOU P, ZHONG S Y, ZHANG X. On the effect of velvet structures on trailing edge noise:Experimental investigation and theoretical analysis[J]. Journal of Fluid Mechanics, 2021, 919: A11. |
115 | JAWORSKI J W, PEAKE N. Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls[J]. Journal of Fluid Mechanics, 2013, 723: 456-479. |
116 | FASSMANN B W, RAUTMANN C, EWERT R, et al. Prediction of porous trailing edge noise reduction via acoustic perturbation equations and volume averaging:AIAA-2015-2525[R]. Reston: AIAA, 2015. |
117 | GEYER T F, SARRADJ E. Trailing edge noise of partially porous airfoils:AIAA-2014-3039[R].Reston: AIAA, 2014. |
118 | BAE Y, JEONG Y E, MOON Y J. Effect of porous surface on the flat plate self-noise:AIAA-2009-3311[R]. Reston: AIAA, 2009. |
119 | KOH S R, MEINKE M, SCHROEDER W, et al. Noise sources of trailing-edge turbulence controlled by porous media:AIAA-2014-3038[R].Reston: AIAA, 2014. |
120 | SHOWKAT S A ALI, AZARPEYVAND M, ILÁRIO DA SILVA C R. Trailing-edge flow and noise control using porous treatments[J]. Journal of Fluid Mechanics, 2018, 850: 83-119. |
121 | SHOWKAT S A ALI, AZARPEYVAND M, ILÁRIO DA SILVA C R. Trailing edge bluntness noise reduction using porous treatments[J]. Journal of Sound and Vibration, 2020, 474: 115257. |
122 | SCHULZE J, SESTERHENN J. Optimal distribution of porous media to reduce trailing edge noise[J]. Computers & Fluids, 2013, 78: 41-53. |
123 | LIU H R, CHEN N S, HU Z J. Effects of non-uniform permeability on vortex shedding and noise control of blunt trailing edge[J]. AIP Advances, 2019, 9(8): 085018. |
124 | ZHOU B Y, KOH S R, GAUGER N R, et al. A discrete adjoint framework for trailing-edge noise minimization via porous material[J]. Computers & Fluids, 2018, 172: 97-108. |
125 | SARRADJ E, GEYER T. Noise generation by porous airfoils:AIAA-2007-3719[R].Reston: AIAA, 2007. |
126 | SUMESH C K, SARVOTHTHAMA JOTHI T J. Aerodynamic noise characteristics of a thin airfoil with line distribution of holes adjacent to the trailing edge[J]. International Journal of Aeroacoustics, 2019, 18(4/5): 496-516. |
127 | GE C J, ZHANG Z H, LIANG P, et al. Prediction and control of trailing edge noise based on bionic airfoil[J]. Science China Technological Sciences, 2014, 57(7): 1462-1470. |
128 | LI Y, WANG X N, CHEN Z W, et al. Experimental study of vortex-structure interaction noise radiated from rod-airfoil configurations[J]. Journal of Fluids and Structures, 2014, 51: 313-325. |
129 | 刘汉儒, 陈南树. 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017, 38(6): 120746. |
LIU H R, CHEN N S. Test on effects of porous permeable section on trailing edge noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120746 (in Chinese). | |
130 | 刘汉儒, 王掩刚, 张俊. 尾缘多孔结构流动控制影响的数值研究[J]. 西北工业大学学报, 2017, 35(1): 103-108. |
LIU H R, WANG Y G, ZHANG J. Numerical simulation of the effects of porous-trailing-edge on flow control[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 103-108 (in Chinese). | |
131 | LIU H R, CHEN N S, WANG Y G, et al. Modification of flow structure and sound source by hybrid porous-serrated trailing edge[J]. Journal of Bionic Engineering, 2020, 17(3): 539-552. |
132 | ZHU J Y, ZHU F L, SU W D, et al. A vorticity dynamics view of “effective slip boundary” with application to foil-flow control[J]. Physics of Fluids, 2014, 26(12): 123602. |
133 | CHANAUD R C. Noise reduction in propeller fans using porous blades at free-flow conditions[J]. The Journal of the Acoustical Society of America, 1972, 51(1A): 15-18. |
134 | CHANAUD R C, KONG N, SITTERDING R B. Experiments on porous blades as a means of reducing fan noise[J]. The Journal of the Acoustical Society of America, 1976, 59(3): 564-575. |
135 | JONES M G, PARROTT T L, SUTLIFF D L, et al. Assessment of soft vane and metal foam engine noise reduction concepts:AIAA-2009-3142[R]. Reston: AIAA, 2009. |
136 | JIANG C Y, MOREAU D, YAUWENAS Y, et al. Control of rotor trailing edge noise using porous additively manufactured blades:AIAA-2018-3792[R]. Reston: AIAA, 2018. |
137 | SUTLIFF D, JONES M G. Foam-metal liner attenuation of low-speed fan noise:AIAA-2008-2897[R]. Reston: AIAA, 2008. |
138 | SUTLIFF D L, JONES M G. Low-speed fan noise attenuation from a foam-metal liner[J]. Journal of Aircraft, 2009, 46(4): 1381-1394. |
139 | SUTLIFF D L, JONES M G, HARTLEY T C. High-speed turbofan noise reduction using foam-metal liner over-the-rotor[J]. Journal of Aircraft, 2013, 50(5): 1491-1503. |
140 | BOZAK R F, DOUGHERTY R P. Measurement of noise reduction from acoustic casing treatments installed over a subscale high bypass ratio turbofan rotor:AIAA- 2018-4099[R]. Reston: AIAA, 2018. |
141 | XU C, MAO Y J, HU Z W. Tonal and broadband noise control of an axial-flow fan with metal foams: Design and experimental validation[J]. Applied Acoustics, 2017, 127: 346-353. |
142 | LIU N T, JIANG C Y, HUANG L X, et al. Effect of porous casing on small axial-flow fan noise[J]. Applied Acoustics, 2021, 175: 107808. |
143 | SUN D K, LI J, XU R Z, et al. Effects of the foam metal casing treatment on aerodynamic stability and aerocoustic noise in an axial flow compressor[J]. Aerospace Science and Technology, 2021, 115: 106793. |
[1] | 刘俊林, 徐希海, 张志成, 陈小前. 火箭高温高速喷流注水降噪数值计算与分析[J]. 航空学报, 2023, 44(7): 127122-127122. |
[2] | 同航, 张良吉, 高瑞彪, 陈伟杰, 乔渭阳. 风扇三维设计阶段宽频噪声快速评估方法及运用[J]. 航空学报, 2023, 44(24): 128606-128606. |
[3] | 施方成, 高振勋, 田雨岩, 蒋崇文, 王田天, 李椿萱. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 626266-626266. |
[4] | 赵鲲, 梁俊彪, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. 民用飞机起落架噪声及其控制技术研究进展[J]. 航空学报, 2022, 43(8): 26996-026996. |
[5] | 燕群, 薛东文, 高翔, 杨嘉丰, 黄文超. 飞机短舱声衬声学性能实验技术[J]. 航空学报, 2022, 43(6): 526810-526810. |
[6] | 丁水汀, 张向波, 杜发荣, 姬芬竹, 周煜. 石墨多孔介质气体轴承研究综述[J]. 航空学报, 2022, 43(10): 525655-525655. |
[7] | 顾金桃, 王晓乐, 汤又衡, 周杰, 黄震宇. 提高飞机壁板低频宽带隔声的层合声学超材料[J]. 航空学报, 2022, 43(1): 224785-224785. |
[8] | 刘俊, 蔡晋生, 杨党国, 施傲, 路波. 超声速空腔流动波系演化及噪声控制研究进展[J]. 航空学报, 2018, 39(11): 22366-022366. |
[9] | 王显圣, 杨党国, 刘俊, 施傲, 周方奇, 吕彬彬. 弹性空腔流致噪声/结构振动特性试验[J]. 航空学报, 2017, 38(7): 120873-120873. |
[10] | 刘汉儒, 陈南树. 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017, 38(6): 120746-120746. |
[11] | 邢宇, 刘沛清, 郭昊, 徐亮, 李玲. 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017, 38(6): 120769-120769. |
[12] | 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650-120650. |
[13] | 王骁原, 郭昊, 邢宇, 刘沛清. LAGOON起落架缩比模型机轮空腔发声机理试验[J]. 航空学报, 2017, 38(5): 120549-120549. |
[14] | 徐希海, 李晓东. 远场假设对喷流噪声预测中格林函数求解的影响[J]. 航空学报, 2016, 37(9): 2699-2710. |
[15] | 洪志亮, 高鸽, 景晓东, 孙晓峰. 一种预测平板尾迹噪声的时域无网格方法[J]. 航空学报, 2015, 36(11): 3501-3514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学