[1] NARK D M, JONES M G. An investigation of bifurcation acoustic treatment effects on aft-fan engine nacelle noise:AIAA-2019-2627[R]. Reston:AIAA, 2019. [2] ENVIA E. Fan noise reduction-An overview:NASA/TM-2001-210699[R]. Washington,D.C.:NASA, 2001. [3] WANG X Y, SUN X F. Transfer element method with application to acoustic design of aeroengine nacelle[J]. Chinese Journal of Aeronautics, 2015, 28(2):327-345. [4] DEAN P D. An in situ method of wall acoustic impedance measurement in flow ducts[J]. Journal of Sound and Vibration, 1974, 34(1):97-130. [5] ZANDBERGEN T. On the practical use of a three-microphone technique for in-situ acoustic impedance measurements on double layer flow duct liners:AIAA-1981-2000[R]. Reston:AIAA, 1981. [6] WATSON W R, JONES M G, PARROTT T L. Validation of an impedance eduction method in flow[J]. AIAA Journal, 1999, 37(7):818-824. [7] JONES M G, WATSON W R, TRACY M B, et al. Comparison of two waveguide methods for educing liner impedance in grazing flow[J]. AIAA Journal, 2004, 42(2):232-240. [8] WATSON W R, TANNER S E, PARROTT T L. Optimization method for educing variable-impedance liner properties[J]. AIAA Journal, 1998, 36(1):18-23. [9] JONES M G, WATSON W R. Effects of liner length and attenuation on NASA Langley impedance eduction:AIAA-2016-2782[R]. Reston:AIAA, 2016. [10] JING X D, PENG S, SUN X F. A straightforward method for wall impedance eduction in a flow duct[J]. The Journal of the Acoustical Society of America, 2008, 124(1):227-234. [11] QIU X H, XIN B, JING X D. Straightforward impedance eduction method for non-grazing incidence wave with multiple modes[J]. Journal of Sound and Vibration, 2018, 432:1-16. [12] CHEN L F, DU L, WANG X Y, et al. A three-dimensional straightforward method for liner impedance eduction in uniform grazing flow[J]. Journal of Sound and Vibration, 2020, 468:115119. [13] LOEW R, LAUER J, MCALLISTER J, et al. The advanced noise control fan:AIAA-2006-3150[R]. Reston:AIAA, 2006. [14] TAPKEN U, RAITOR T, ENGHARDT L. Tonal noise radiation from an UHBR fan-optimized in-duct radial mode analysis:AIAA-2009-3288[R]. Reston:AIAA, 2009. [15] 杨嘉丰, 薛东文, 李卓瀚, 等. 切向流条件下短舱单/双自由度声衬实验[J]. 航空学报, 2020, 41(11):223860. YANG J F, XUE D W, LI Z H, et al. Single and double degree-of-freedom acoustic liners under grazing flow:Experiment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):223860(in Chinese). [16] XIN B, YANG J F, JING X D, et al. Experimental and numerical investigation of anechoic termination for a duct with mean flow[J]. Applied Acoustics, 2018, 139:213-221. [17] DAVIES P O A L. Practical flow duct acoustics[J]. Journal of Sound and Vibration, 1988, 124(1):91-115. [18] YAN Q, XUE D W, HUAGN W C, et al. Design of acoustic spinning mode synthesizer an its application in aeroengine nacelle liner validation experiment[C]//15th Russia-Chinese Cofference, 2017. [19] SIJTSMA P, ZILLMANN J. In-duct and far-field mode detection techniques:AIAA-2007-3439[R]. Reston:AIAA, 2007. [20] TAPKEN U, ENGHARDT L. Optimisation of sensor arrays for radial mode analysis in flow ducts:AIAA-2006-2638[R]. Reston:AIAA, 2006. [21] SUTLIFF D L. Rotating rake turbofan duct mode measurement system[J]. The Journal of the Acoustical Society of America, 2005, 118(3):1864. |