[1] 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139. HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139(in Chinese). [2] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报, 2020, 41(2): 123386. ZHANG J L, LEI H S, TIAN H, et al. Noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123386(in Chinese). [3] WILBY J F. Aircraft interior noise[J]. Journal of Sound and Vibration, 1996, 190(3): 545-564. [4] 戴扬, 陈藻, 孙进才. 飞机壁板结构隔声计算与实验研究[J]. 航空学报, 1993, 14(10): 523-528. DAI Y, CHEN Z, SUN J C. The computational and experimental investigation on sound insulation of aircraft sidewall structures[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(10): 523-528(in Chinese). [5] 温卓群, 王鹏飞, 张雁, 等. 面向大尺度结构的力学超材料减振技术[J]. 航空学报, 2018, 39(增刊1): 155-159. WEN Z Q, WANG P F, ZHANG Y, et al. Vibration reduction technology of mechanical metamaterials presented to large scale structures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(Sup 1): 155-159(in Chinese). [6] 宋玉宝, 温激鸿, 郁殿龙, 等. 板结构振动与噪声抑制研究综述[J]. 机械工程学报, 2018, 54(15): 60-77. SONG Y B, WEN J H, YU D L, et al. Review of vibration and noise control of the plate structures[J]. Journal of Mechanical Engineering, 2018, 54(15): 60-77(in Chinese). [7] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301. [8] MA G C, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595. [9] YANG M, SHENG P. Sound absorption structures: from porous media to acoustic metamaterials[J]. Annual Review of Materials Research, 2017, 47(1): 83-114. [10] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68-78. WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78(in Chinese). [11] ANG L Y L, KOH Y K, LEE H P. Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control[J]. Applied Physics Letters, 2017, 111(4): 041903. [12] ANG L Y L, KOH Y K, LEE H P. Plate-type acoustic metamaterials: Evaluation of a large-scale design adopting modularity for customizable acoustical performance[J]. Applied Acoustics, 2019, 149: 156-170. [13] ZHANG Y G, WEN J H, ZHAO H G, et al. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells[J]. Journal of Applied Physics, 2013, 114(6): 063515. [14] WANG X P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867. [15] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906. [16] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J]. Journal of Applied Physics, 2011, 110(12): 124903. [17] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Scaling of membrane-type locally resonant acoustic metamaterial arrays[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2784-2792. [18] SUI N, YAN X, HUANG T Y, et al. A lightweight yet sound-proof honeycomb acoustic metamaterial[J]. Applied Physics Letters, 2015, 106(17): 171905. [19] HUANG T Y, SHEN C, JING Y. Membrane-and plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3240-3250. [20] MA F Y, HUANG M, WU J H. Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant[J]. Journal of Applied Physics, 2017, 121(1): 015102. [21] MA F Y, HUANG M, WU J H. Acoustic metamaterials with synergetic coupling[J]. Journal of Applied Physics, 2017, 122(21): 215102. [22] MA F Y, HUANG M, XU Y C, et al. Bilayer synergetic coupling double negative acoustic metasurface and cloak[J]. Scientific Reports, 2018, 8: 5906. [23] MA F Y, HUANG M, XU Y C, et al. Bi-layer plate-type acoustic metamaterials with Willis coupling[J]. Journal of Applied Physics, 2018, 123(3): 035104. [24] XU Y C, WU J H, CAI Y Q, et al. Acoustic bi-anisotropy in asymmetric acoustic metamaterials[J]. Applied Physics Express, 2020, 13(10): 106503. [25] WANG X L, LUO X D, ZHAO H, et al. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J]. Applied Physics Letters, 2018, 112(2): 021901. [26] VARANASI S, BOLTON J S, SIEGMUND T H, et al. The low frequency performance of metamaterial barriers based on cellular structures[J]. Applied Acoustics, 2013, 74(4): 485-495. [27] VARANASI S, BOLTON J S, SIEGMUND T. Experiments on the low frequency barrier characteristics of cellular metamaterial panels in a diffuse sound field[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 602-610. [28] WANG X L, ZHAO H, LUO X D, et al. Membrane-constrained acoustic metamaterials for low frequency sound insulation[J]. Applied Physics Letters, 2016, 108(4): 041905. [29] ZHU X F, LAU S K, LU Z B, et al. Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer[J]. Journal of Sound and Vibration, 2019, 461: 114922. [30] FAHY F, KALNINS A. Sound and structural vibration: Radiation, transmission, and response[M]. Pittsburgh: Academic Press, 1985. [31] XUE Y T, BOLTON J S. Microstructure design of lightweight fibrous material acting as a layered damper for a vibrating stiff panel[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3254. [32] XUE Y T, BOLTON J S, HERDTLE T, et al. Structural damping by lightweight poro-elastic media[J]. Journal of Sound and Vibration, 2019, 459: 114866. [33] DE MELO FILHO N G R, VAN BELLE L, CLAEYS C, et al. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance[J]. Journal of Sound and Vibration, 2019, 442: 28-44. [34] MUHLESTEIN M B, SIECK C F, WILSON P S, et al. Experimental evidence of Willis coupling in a one-dimensional effective material element[J]. Nature Communications, 2017, 8: 15625. [35] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302. [36] ASTM. Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method: ASTM E2611-2017[S]. West Conshohocken:ASTM International,2017. [37] ISO.Acoustics; determination of sound power levels of noise sources using sound intensity; part 1: Measurement at discrete points: ISO 9614-1-1993[S]. Geneva:ISO,1993. [38] MA F Y, XU Y C, WU J H. Shell-type acoustic metasurface and arc-shape carpet cloak[J]. Scientific Reports, 2019, 9: 8076. |