[1] KAUFMAN L G, CLARK R L. Mach 0.6 to 3.0 flows over rectangular cavities: AFWAL-TR-82-3112[R]. Dayton, OH: Air Force Wright Aeronautical Labs, 1983. [2] LADOON D W, SCHNEIDER S P, SCHMISSEUR J D. Physics of resonance in a supersonic forward-facing cavity[J]. Journal of Spacecraft and Rockets, 1998, 35(5): 626-632. [3] 耿云飞, 阎超. 高超声速前缘空腔数值模拟研究[J]. 空气动力学学报, 2011, 29(4): 470-475. GENG Y F, YAN C. Numerical simulation on the hypersonic leading edge cavity[J]. Acta Aerodynamica Sinica, 2011, 29(4): 470-475 (in Chinese). [4] 陆海波, 田世英. 迎风凹腔——一种有效的高超声速飞行器热防护选择[J]. 飞航导弹, 2015(6): 11-15. LU H B, TIAN S Y. Forward-facing cavity—One choice for thermal protection of hypersonic vehicles[J]. Aerodynamic Missile Journal, 2015(6): 11-15 (in Chinese). [5] ROUGEUX A, MALO-MOLINA F. Numerical studies for 3D supersonic cavity based flows: AIAA-2012-0776[R]. Reston, VA: AIAA, 2012. [6] WHITE J, BAURLE R, FISHER T, et al. Low-dissipation advection schemes designed for large eddy simulations of hypersonic propulsion systems: AIAA-2012-4263[R]. Reston, VA: AIAA, 2012. [7] STALLINGS JR R L, WILCOX JR F J, FORREST D K. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds: NASA-TP-3110[R].Washington, D.C.: NASA, 1991. [8] 汪洪波, 孙明波, 吴海燕, 等. 超声速燃烧凹腔质量交换特性的混合RANS/LES模拟[J]. 航空动力学报, 2010, 25(1): 41-46. WANG H B, SUN M B, WU H Y, et al. Hybrid RANS/LES simulation of mass exchange characteristics of cavity for supersonic combustion[J]. Journal of Aerospace Power, 2010, 25(1): 41-46 (in Chinese). [9] 孙明波, 梁剑寒, 王振国. 超声速燃烧火焰稳定凹腔质量交换特性的数值研究[J]. 力学学报, 2007, 39(2): 188-194. SUN M B, LIANG J H, WANG Z G. Numerical study on mass exchange characteristics of cavity flameholders for scramjet applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2): 188-194 (in Chinese). [10] 贾真. 超声速燃烧室中壁面凹腔结构的稳焰机理[J]. 航空动力学报, 2013, 28 (6): 1392-1401. JIA Z. Flame-holding mechanism of cavity structure in super-sonic combustor[J]. Journal of Aerospace Power, 2013, 28 (6): 1392-1401 (in Chinese). [11] MCILWAIN S, KIM J, BREITENFELD S, et al. Simulations of an aeroelastic control system for shock/boundary layer interactions: AIAA-2001-0269[R]. Reston, VA: AIAA, 2001. [12] JAIMAN R K, LOTH E, DUTTON J C. Simulations of normal shock-wave/boundary-layer interaction control using mesoflaps[J]. Journal of Propulsion and Power, 2004, 20(2): 344-352. [13] CHANG C L, CHOUDHARI M, VENKATACHARI B S, et al. Effects of cavities and protuberances on transition over hypersonic vehicles: AIAA-2011-3245[R]. Reston, VA: AIAA, 2011. [14] LIECHTY D S, BERRY S A, HORVATH T J. Shuttle return to flight experimental results: Protuberance effects on boundary layer transition: NASA-TM-2006-214305[R]. Washington, D.C.: NASA, 2006. [15] EVERHART J. Supersonic/hypersonic correlations for in-cavity transition and heating augmentation: AIAA-2011-3480[R]. Reston, VA: AIAA, 2011. [16] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51: 138-150. [17] 侯中喜, 夏刚, 秦子增. 三维超声速开式空腔振荡特性研究[J]. 国防科技大学学报, 2004, 26(6): 1-4. HOU Z X, XIA G, QIN Z Z. The numerical analysis of oscillatory characteristics in 3D supersonic open cavity[J]. Journal of National University of Defense Technology, 2004, 26(6): 1-4 (in Chinese). [18] NENMENI V, YU K. Cavity-induced mixing enhancement in confined supersonic flows: AIAA-2002-1010[R]. Reston, VA: AIAA, 2002. [19] 刘彧, 周进, 晏至辉.不同隔板构型下的超声速混合层流场特性[J]. 国防科技大学学报, 2013, 35(5): 1-5. LIU Y, ZHOU J, YAN Z H. Study on the flow fields of supersonic mixing layer with splitters of different geometric configurations[J]. Journal of National University of Defense Technology, 2013, 35(5): 1-5 (in Chinese). [20] RAMAN G, ENVIA E, BENCIC T. Tone noise and nearfield pressure produced by jet-cavity interaction: AIAA-1998-0604[R]. Reston, VA: AIAA, 1998. [21] HELLER H, DELFS J. Cavity pressure oscillations: The generating mechanism visualized[J]. Journal of Sound and Vibration, 1996, 196 (2): 248-252. [22] LEE B H K. Effect of captive stores on internal weapons bay floor pressure distributions[J]. Journal of Aircraft, 2010, 47(2): 732-736. [23] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. [24] KRISHNAMURTY K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces: NACA-TN-3487[R]. Washington, D.C.: NASA, 1955. [25] NESTLER D E. An experimental study of hypersonic cavity flow[J]. Journal of Spacecraft and Rockets, 1982, 19(3): 195-196. [26] ZHANG X, EDWARDS J A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1990, 94: 355-364. [27] ZHANG X, RONA A, EDWARDS J A. An observation of pressure waves around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4): 771-778. [28] ZHUANG N. Experimental investigation of supersonic cavity flows and their control[D]. Tallahassee, FL: Florida State University, 2007: 41-145. [29] SCHMIT R, SEMMELMAYER F, GROVE J, et al. Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field: AIAA-2011-3961[R]. Reston, VA: AIAA, 2011. [30] HANDA T, MIYACHI H, KAKUNO H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Experiments in Fluids, 2012, 53(6): 1855-1866. [31] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: 64037[R]. Farnborough: Ministry of Aviation, Royal Aircraft Establishment, 1964. [32] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities—Physical mechanisms and suppression concepts: AFFDL-TR-74-133[R]. Dayton, OH: Wright-Patterson Air Force Base, 1975. [33] AHUJA K K, MENDOZA J. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes: NASA-CR-4653[R]. Washington, D.C.: NASA, 1995. [34] 张锦松, 谭磊, 刘俊, 等. 明渠水流相似模拟超声速气体空腔流动的研究[J/OL]. 水力发电学报, (2018-04-03) [2018-08-13]. http://kns.cnki.net/kcms/detail/11.2241.TV.20180402.1631.010.html. ZHANG J S, TAN L, LIU J, et al. Supersonic gas cavity flow with open channel flow[J/OL]. Journal of Hydroelectric Engineering,(2018-04-03) [2018-08-13]. http://kns.cnki.net/kcms/detail/11.2241.TV.20180402.1631.010.html. [35] TAKAKURA Y, SUZUKI T, HIGASHINO F, et al. Numerical study on supersonic internal cavity flows—What causes the pressure fluctuations?: AIAA-1999-0545[R]. Reston, VA: AIAA, 1999. [36] TAM C J, ORKWIS P D, DISIMILE P J. Algebraic turbulence model simulations of supersonic open-cavity flow physics[J]. AIAA Journal, 1996, 34(11): 2255-2260. [37] WANG H, SUN M, QIN N, et al. Characteristics of oscillations in supersonic open cavity flows[J]. Flow, Turbulence and Combustion, 2013, 90(1): 121-142. [38] ZHANG X. Compressible cavity flow oscillation due to shear layer instabilities and pressure feedback[J]. AIAA Journal, 1995, 33(8): 1404-1411. [39] MOHRI K, HILLIER R. Computational and experimental study of supersonic flow over axisymmetric cavities[J]. Shock Waves, 2011, 21(3): 175-191. [40] LI W, NONOMURA T, FUJⅡ K. Effects of shear-layer characteristic on the feedback-loop mechanism in supersonic open cavity flows: AIAA-2011-1218[R]. Reston, VA: AIAA, 2011. [41] LI W, NONOMURA T, OYAMA A, et al. Feedback mechanism in supersonic laminar cavity flows[J]. AIAA Journal, 2013, 51(1): 253-257. [42] RIZZETTA D P. Numerical simulation of supersonic flow over a three-dimensional cavity[J]. AIAA Journal, 1988, 26(7): 799-807. [43] LI W, NONOMURA T, FUJⅡ K. On the feedback mechanism in supersonic cavity flows[J]. Physics of Fluids, 2013, 25(5): 056101. [44] ZHANG X, EDWARDS J A. Computational analysis of unsteady supersonic cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1988, 92: 365-374. [45] ZHANG X, EDWARDS J A. Analysis of unsteady supersonic cavity flow employing an adaptive meshing algorithm[J]. Computers & Fluids, 1996, 25(4): 373-393. [46] CATTAFESTA Ⅲ L N, SONG Q, WILLIAMS D R, et al. Active control of flow-induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008, 44(7-8): 479-502. [47] ROWLEY C W, WILLIAMS D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annual Review of Fluid Mechanics, 2006, 38: 251-276. [48] WILLIAMS D, ROWLEY C. Recent progress in closed-loop control of cavity tones: AIAA-2006-0712[R]. Reston, VA: AIAA, 2006. [49] CATTAFESTA L, ALVI F, WILLIAMS D, et al. Review of active control of flow-induced cavity oscillations: AIAA-2003-3567[R]. Reston, VA: AIAA, 2003. [50] STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds: NASA-TP-2683[R]. Washington, D.C.: NASA, 1987. [51] 马明生, 张培红, 邓有奇, 等. 超声速空腔流动数值模拟研究[J]. 空气动力学学报, 2008, 26(3): 388-393. MA M S, ZHANG P H, DENG Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3): 388-393 (in Chinese). [52] MOON S, GAI S, KLEINE H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications: AIAA-2010-4687[R]. Reston, VA: AIAA, 2010. [53] SRIDHAR V, KLEINE H, GAI S L. Visualization of wave propagation within a supersonic two-dimensional cavity by digital streak schlieren[J]. Experiments in Fluids, 2015, 56: 1-15. [54] HANDA T, MASUDA M. On the jump in the frequency of acoustic oscillations in supersonic flows over rectangular cavity[J]. Physics of Fluids, 2009, 21(2): 026102. [55] TAM C K W, BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(28): 373-399. [56] HANDA T, MIYACHI H, KAKUNO H, et al. Modeling of a feedback mechanism in supersonic deep-cavity flows[J]. AIAA Journal, 2015, 53(2): 420-425. [57] CHANDRA B U, CHAKRAVARTHY S R. Experimental investigation of cavity-induced acoustic oscillations in confined supersonic flow[J]. Journal of Fluids Engineering, 2005, 127(4): 761-769. [58] ROCKWELL D, NAUDASCHER E. Self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering, 1978, 100(2): 152-165. [59] ZHANG X, CHEN X X, RONA A, et al. Attenuation of cavity flow oscillation through leading edge flow control[J]. Journal of Sound and Vibration, 1999, 221(1): 23-47. [60] MALHOTRA A, VAIDYANATHAN A. Aft wall offset effects on open cavities in confined supersonic flow[J]. Experimental Thermal and Fluid Science, 2016, 74: 411-428. [61] UNALMIS O H. Cavity oscillation mechanisms in high-speed flows[J]. AIAA Journal, 2004, 42(10): 2035-2041. [62] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545-553. [63] HELLER H H, HOLMES G, COVERT E E. Flow-induced pressure oscillations in shallow cavities: AFFDL-TR-70-104[R]. Dayton, Ohio: Wright-Patterson Air Force Base, 1970. [64] HAMED A, BASU D, DAS K. Effect of Reynolds number on the unsteady flow and acoustic fields of supersonic cavity[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. New York: ASME, 2003: 1049-1054. [65] 张群峰, 闫盼盼, 黎军. 边界层厚度对腔体气动声学特性影响数值模拟[J]. 航空动力学报, 2016, 31(3): 717-725. ZHANG Q F, YAN P P, LI J. Numerical simulation on influence of boundary-layer thickness on the cavity aero-acoustic characteristics[J]. Journal of Aerospace Power, 2016, 31(3): 717-725 (in Chinese). [66] 刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475-483. LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 475-483 (in Chinese). [67] 杨党国, 李建强, 范召林, 等. 超声速来流边界层厚度对浅腔声学特性的影响[J]. 航空动力学报, 2010, 25(4): 907-911. YANG D G, LI J Q, FAN Z L, et al. Shallow cavity noise influencing by boundary-layer thickness at supersonic speeds[J]. Journal of Aerospace Power, 2010, 25(4): 907-911 (in Chinese). [68] RONA A, DIEUDONN W. Unsteady laminar and turbulent cavity flow models by second order upwind methods: AIAA-1999-0656[R]. Reston, VA: AIAA, 1999. [69] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach 1.5 cavity flow field: AIAA-2012-3139[R]. Reston, VA: AIAA, 2012. [70] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55: 1810. [71] UKEILEY L S, PONTON M K, SEINER J M, et al. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70-79. [72] DUDLEY J, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control: AIAA-2011-3844[R]. Reston, VA: AIAA, 2011. [73] FLAHERTY W, REEDY T M, ELLIOTT G S, et al. Investigation of cavity flow using fast-response pressure-sensitive paint[J]. AIAA Journal, 2014, 52(11): 2462-2470. [74] CHAUDHARI K, RAMAN G. Control of flow over a rectangular cavity using a rod in cross flow: further evaluation of key mechanisms: AIAA-2011-0037[R]. Reston, VA: AIAA, 2011. [75] DIX R E, BAUER R C. Experimental and theoretical study of cavity acoustics: AEDC-TR-99-4[R]. 1999. [76] MATSUO S, ALAM M M, SETOGUCHI T, et al. Passive control of cavity-induced pressure oscillations using sub-cavity[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, 2007: 1-8. [77] LUO K, ZHE W, XIAO Z, et al. Improved delayed detached-eddy simulations of sawtooth spoiler control before supersonic cavity[J]. International Journal of Heat and Fluid Flow, 2017, 63: 172-189. [78] VAKILI A D, GAUTHIER C. Control of cavity flow by upstream mass-injection[J]. Journal of Aircraft, 1994, 31(1): 169-174. [79] THANGAMANI V, KURIAN J. Control of cavity oscillations in a supersonic flow by microjet injection[J]. Journal of Aircraft, 2013, 50(4): 1305-1309. [80] FIEDLER H E, FERNHOLZ H H. On management and control of turbulent shear flows[J]. Progress in Aerospace Sciences, 1990, 27(4): 305-387. [81] MORKOVIN M V, PARANJAPE S V. On acoustic excitation of shear layers[J]. Z. Flugwiss, 1971, 19: 328-335. [82] IMAI T, ASAI M. Receptivity of the shear layer separating from a rear edge of flat plate[J]. Fluid Dynamics Research, 2009, 41(3): 035506. [83] DANILOV P, QUACKENBUSH T. Flow driven oscillating vortex generators for control of cavity resonance: AIAA-2011-1219[R]. Reston, VA: AIAA, 2011. [84] PANICKAR M B, MURRAY N E, JANSEN JR B J, et al. Reduction of noise generated by a half-open weapons bay[J]. Journal of Aircraft, 2013, 50(3): 716-724. [85] LUSK T, CATTAFESTA L, UKEILEY L. Leading edge slot blowing on an open cavity in supersonic flow[J]. Experiments in Fluids, 2012, 53(1): 187-199. [86] GEORGE B, UKEILEY L S, CATTAFESTA L N, et al. Control of three-dimensional cavity flow using leading-edge slot blowing: AIAA-2015-1059[R]. Reston, VA: AIAA, 2015. [87] BUENO P, UNALMIS O, CLEMENS N, et al. The effects of upstream mass injection on a Mach 2 cavity flow: AIAA-2002-0663[R]. Reston, VA: AIAA, 2002. [88] 王一丁, 郭亮, 童明波, 等. 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015, 36(1): 213-222. WANG Y D, GUO L, TONG M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 213-222 (in Chinese). [89] 房田文, 丁猛, 刘卫东, 等. 气液喷流与超声速凹腔流场的相互作用[J]. 推进技术, 2008, 29(3): 312-317. FANG T W, DING M, LIU W D, et al. Interaction between gas/liquid injection and supersonic flow over cavities[J]. Journal of Propulsion Technology, 2008, 29(3): 312-317. [90] THIEMANN C L. An experimental study of supersonic cavity flow control with vertical rods[M]. Knoxville, TN: University of Tennesse, 2013: 30-35. [91] 贾真, 吴迪, 朴英, 等. 凹腔前缘角对超声速燃烧室性能的影响[J]. 航空动力学报, 2012, 27(5): 993-998. JIA Z, WU D, PIAO Y,et al. Effect of cavity leading edge angle on performance of super-sonic combustor[J]. Journal of Aerospace Power, 2012, 27(5): 993-998 (in Chinese). [92] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2015, 52(2): 609-616. [93] MOON S J. Passive control of supersonic flow over straight cavities[M]. Sydney: University of New South Wales, 2008: 19-20. [94] LEE Y, KANG M, KIM H, et al. Passive control techniques to alleviate supersonic cavity flow oscillation[J]. Journal of Propulsion and Power, 2008, 24(4): 697-703. [95] THANGAMANI V, SADDINGTON A, KNOWLES K. An investigation of passive control methods for a large scale cavity model in high subsonic flow: AIAA-2013-2049[R]. Reston, VA: AIAA, 2013. [96] WILLIAMS D R, CORNELIUS D, ROWLEY C W. Supersonic cavity response to open-loop forcing[M]//Active Flow Control. Heidelberg: Springer, 2007: 230-243. [97] 宁方立, 史红兵, 丘廉芳, 等. 前缘高频振动对亚声速开式空腔内强噪声影响的数值研究[J]. 航空学报, 2015, 36(12): 3843-3852. NING F L, SHI H B, QIU L F, et al. Numerical research of high frequency vibration effect on the subsonic open cavity macro-noise[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3843-3852 (in Chinese). [98] 宋文成, 李玉军, 冯强. 武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报, 2016, 34(1): 33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1): 33-39 (in Chinese). [99] PEREIRA J C F, SOUSA J M M. Influence of impingement edge geometry on cavity flow oscillations[J]. AIAA Journal, 1994, 32(8): 1737-1740. [100] VIKRAMADITYA N S, KURIAN J. Pressure oscillations from cavities with ramp[J]. AIAA Journal, 2009, 47(12): 2974-2984. [101] SOEMARWOTO B I, KOK J C. Computations of three-dimensional unsteady supersonic cavity flow to study the effect of different downstream geometries: ADP014111[R]. Amsterdam: NLR-Netherlands Aerospace Centre, 2003. |