[1] ZAPOROZHETS O, ISAIENKO V, SYNYLO K. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment[J]. Energy, 2020, 211(11):8814. [2] GIMELLI A, SANNINO R. Thermodynamic model validation of Capstone C30 micro gas turbine[J]. Energy Procedia, 2017, 126:955-962. [3] BENINI E. Progress in gas turbine performance[M]. 2013:107-141. [4] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery:a review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47. [5] HENAO N C, LORA E E S, MAYA D M Y, et al. Technical feasibility study of 200 kW gas microturbine coupled to a dual fluidized bed gasifier[J]. Biomass and Bioenergy, 2019, 130(11):105369. [6] MAJUMDAR B C, KUMAR A. Analysis of two-layered gas-lubricated porous bearings[J]. International Journal of Applied Mechanics and Engineering, 2002, 7(2):653-664. [7] MAJUMDER M C, MAJUMDAR B C. Theoretical analysis of pneumatic instability of externally pressurized porous gas journal bearings considering velocity slip[J]. Journal of Tribology, 1988, 110(4):730-733. [8] BÖHLE M. Numerical investigation of the flow in hydrostatic journal bearings with porous material[C]//Fluids Engineering Division Summer Meeting, 2018:V003T12A025. [9] KWAN Y B P, CORBETT J. Porous aerostatic bearings-an updated review[J]. Wear, 1998, 222(2):69-73. [10] HESHMAT H, WALTON J F II. Starved hydrodynamic gas foil bearings-experiment, micromechanical phenomenon, and hypotheses[J]. Journal of Tribology, 2016, 138(4):041703. [11] HUNSBERGER A, WALTON J F, HESHMAT H. Debris tolerant compliant foil bearings for high-speed turbomachines[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition, 2015. [12] HESHMAT H, WALTON J F, HUNSBERGER A. Oil free 8 kW high-speed and high specific power turbogenerator[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition, 2014. [13] ZHAO X W, XIAO S H. A three-dimensional model of gas foil bearings and the effect of misalignment on the static performance of the first and second generation foil bearings[J]. Tribology International, 2021, 156(4):106821. [14] SNECK H J. A survey of gas-lubricated porous bearings[J]. Journal of Lubrication Technology, 1968, 90(4):804-809. [15] 顾延东. 多孔质气体径向轴承静动特性研究及优化设计方法[D]. 镇江:江苏大学, 2019:101-120. GU Y D. Investigation on the static and dynamic characteristics and optimization design of aerostatic radial bearing with porous restrictor[D]. Zhenjiang:Jiangsu University, 2019:101-120 (in Chinese). [16] GUHA S K, RAO N S, MAJUMDAR B C. Study of conical whirl instability of self-acting porous gas journal bearings considering tangential velocity slip[J]. Journal of Tribology, 1988, 110(1):139-143. [17] YOSHIMOTO S, KOHNO K. Static and dynamic characteristics of aerostatic circular porous thrust bearings (effect of the shape of the air supply area)[J]. Journal of Tribology, 2001, 123(3):501-508. [18] SCHIMPF A, GU Y, BÖHLE M. Analysis of flow models for aerostatic thrust bearings with porous material[J]. Journal of Mechanics Engineering and Automation, 2020, 10(6):181-188. [19] HOU Y R, QIN Y. On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition[J]. Computers & Mathematics with Applications, 2019, 77(1):50-65. [20] KUMAR M P, DE S, SAMANTA P, et al. A comprehensive numerical model for double-layered porous air journal bearing at higher bearing numbers[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2018, 232(5):592-606. [21] MCKAY G. The beavers and Joseph condition for velocity slip at the surface of a porous medium continuum[M]. Berlin:Springer Berlin Heidelberg, 2001:126-139. [22] 伍奕桦. 多孔质可倾瓦轴承支承转子系统动力学分析及其实验研究[D]. 长沙:湖南大学, 2019:56-66. WU Y H. Theoretical analysis and experimental investigation on rotordynamic performance of a rigid rotor supported on porous tiliting pad bearings[D]. Changsha:Hunan University, 2019:56-66 (in Chinese). [23] WU Y H, FENG K, ZHANG Y, et al. Nonlinear dynamic analysis of a rotor-bearing system with porous tilting pad bearing support[J]. Nonlinear Dynamics, 2018, 94(2):1391-1408. [24] SAN A L, YANG J, DEVITT A. On tilting pad carbon-graphite porous journal bearings:measurements of imbalance response and comparison to predictions of bearing performance and system dynamic response[J/OL]. Tribology Transactions, (2021-02-10)[2021-6-1]. https://www.tandfonline.com/doi/full/10.1080/10402004.2021.1875091. [25] 于雪梅. 局部多孔质气体静压轴承关键技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:20-30. YU X M. Research on key technologies of partial porous externally pressurized gas bearing[D]. Harbin:Harbin Institute of Technology, 2007:20-30 (in Chinese). [26] 饶河清. 基于FLUENT软件的多孔质静压轴承的仿真与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2006:24-50. RAO H Q. Simulation based in Fluent and experimental research of porous aeroatatic bearing[D]. Harbin:Harbin Institute of Technology, 2006:24-50 (in Chinese). [27] MALLISETTY P K, SAMANTA P, MURMU N C. Nonlinear transient analysis of rigid rotor mounted on externally pressurized double-layered porous gas journal bearings accounting velocity slip[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10):1-12. [28] LENTINI L, MORADI M, COLOMBO F. A historical review of gas lubrication:from Reynolds to active compensations[J]. Tribology in Industry, 2018, 40(2):165-182. [29] BHATTACHARJEE B, CHAKRABORTI P, CHOUDHURI K. Theoretical analysis of single-layered porous short journal bearing under the lubrication of micropolar fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9):1-9. [30] MOKADAM R G. Thermodynamic analysis of the darcy law[J]. Journal of Applied Mechanics, 1961, 28(2):208-212. [31] SU J C T, YOU H I, LAI J X. Numerical analysis on externally pressurized high-speed gas-lubricated porous journal bearings[J]. Industrial Lubrication and Tribology, 2003, 55(5):244-250. [32] 占国清. 多孔质气体静压轴承高置信度数值模拟方法研究[D]. 成都:电子科技大学, 2018:34-44. ZHAN G Q. Research on high confidence of numerical simulation method for porous aerostatic bearings[D]. Chengdu:University of Electronic Science and Technology of China, 2018:34-44 (in Chinese). [33] BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30(1):197-207. [34] HSING F C. The effect of fluid inertia on a porous thrust plate-an analytical solution[J]. Journal of Lubrication Technology, 1971, 93(1):202-206. [35] SUN D C. Analysis of the steady state characteristics of gas-lubricated, porous journal bearings[J]. Journal of Lubrication Technology, 1975, 97(1):44-51. [36] LI Y, DUAN F H. Interference torque of a three-floated gyroscope with gas-lubricated bearings subject to a sudden change of the specific force[J]. Chinese Journal of Aeronautics, 2019, 32(3):737-747. [37] 卢诗毅. 多孔质气浮主轴设计及其稳定性分析[D]. 广州:广东工业大学, 2017:67-90. LU S Y. Design and stability analysis of porous aerostatic spindle[D]. Guangzhou:Guangdong University of Technology, 2017:67-90(in Chinese). [38] PRAKASH J, GURURAJAN K. Effect of velocity slip in an infinitely long rough porous journal bearing[J]. Tribology Transactions, 1999, 42(3):661-667. [39] WANG C C, LEE T E. Nonlinear dynamic analysis of bi-directional porous aero-thrust bearing systems[J]. Advances in Mechanical Engineering, 2017, 9(12):1-2. [40] 张卫艳, 林彬, 张晓峰. 多孔质气体静压径向轴承的Fluent仿真与实验研究[J]. 润滑与密封, 2018, 43(3):23-30. ZHANG W Y, LIN S, ZHANG X F. Fluent simulation and experimental study of porous aerostatic joumal bearing[J]. Lubrication Engineering, 2018:43(3):23-30 (in Chinese). [41] NADUVINAMANI N B, HIREMATH P S, GURUBASAVARAJ G. Surface roughness effects in a short porous journal bearing with a couple stress fluid[J]. Fluid Dynamics Research, 2002, 31(5-6):333-354. [42] SOME S, GUHA S K. Non-linear stability analysis of two-layered porous journal bearings with velocity slip and percolation effect of additives of coupled-stress lubricant[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2021, 235(1):46-60. [43] LI W J, WANG S J, ZHAO Z L, et al. Numerical and experimental investigation on the performance of hybrid porous gas journal bearings[J]. Lubrication Science, 2021, 33(2):60-78. [44] ZHANG G T, TONG B H, YIN Y G. Temperature distribution and heat generating/transfer mechanism of the circular bilayer porous bearing for thermo-hydrodynamic problem[J]. International Journal of Heat and Mass Transfer, 2020, 149:119134. [45] WU Y H, DENG M W, FENG K, et al. Investigations on the nonlinear dynamic characteristics of a rotor supported by porous tilting pad bearings[J]. Nonlinear Dynamics, 2020, 100(3):2265-2286. [46] MURTI P R K. Analysis of externally pressurized gas porous bearings[J]. Journal of Lubrication Technology, 1974, 96(3):354-360. [47] CUI H L, WANG Y, YUE X B, et al. Effects of manufacturing errors on the static characteristics of aerostatic journal bearings with porous restrictor[J]. Tribology International, 2017, 115:246-260. [48] KUMAR A, RAO N S. Turbulent hybrid journal bearings with porous bush:a steady state performance[J]. Wear, 1992, 154(1):23-35. [49] PLANTE J S, VOGAN J, EL-AGUIZY T, et al. A design model for circular porous air bearings using the 1D generalized flow method[J]. Precision Engineering, 2005, 29(3):336-346. [50] OIWA N, MASUDA M, HIRAYAMA T, et al. Deformation and flying height orbit of glass sheets on aerostatic porous bearing guides[J]. Tribology International, 2012, 48(4):2-7. [51] OTSU Y, MIYATAKE M, YOSHIMOTO S. Dynamic characteristics of aerostatic porous journal bearings with a surface-restricted layer[J]. Journal of Tribology, 2011, 133(1):011701. [52] FLEMING D P, THAYER W J, CUNNINGHAM R E. Dynamic stiffness and damping of externally pressurized gas lubricated journal bearings[J]. Journal of Lubrication Technology, 1977, 99(1):101-105. [53] HELLER S, SHAPIRO W, DECKER O. A porous hydrostatic gas bearing for use in miniature turbomachinery[J]. ASLE Transactions, 1971, 14(2):144-155. [54] JANG G H, KIM Y J. Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system[J]. Journal of Tribology, 1999, 121(3):499-505. [55] WANG C C. Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system[J]. Acta Mechanica, 2006, 183(1-2):41-60. [56] WANG C C, LO C Y, CHEN C K. Nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings[J]. Journal of Tribology, 2002, 124(3):553-561. [57] 印兆宇. 多孔质气体轴承主轴动态特性分析[D]. 南京:东南大学, 2014:30-40. YIN Z Y. Dynamic characteristics analysis of the spindle with porous gas bearings[D]. Nanjing:Southeast University, 2014:78-90 (in Chinese). [58] CASTELLI V P. Experimental and theoretical analysis of the gas-lubricated porous rotating journal bearing[J]. ASLE Transactions, 1979, 22(4):382-388. [59] CHANG-JIAN C W, CHEN C K. Chaotic response and bifurcation analysis of a flexible rotor supported by porous and non-porous bearings with nonlinear suspension[J]. Nonlinear Analysis:Real World Applications, 2009, 10(2):1114-1138. [60] PANZERA T H, RUBIO J C, BOWEN C R, et al. Microstructural design of materials for aerostatic bearings[J]. Cement and Concrete Composites, 2008, 30(7):649-660. [61] DURAZO-CARDENAS I S, CORBETT J, STEPHENSON D J. Permeability and dynamic elastic moduli of controlled porosity ultra-precision aerostatic structures[J]. Ceramics International, 2014, 40(2):3041-3051. [62] 崔海龙. 多孔质气体静压轴承动态特性影响机理研究[D]. 北京:中国工程物理研究院, 2018:5-15. CUI H L. Study on the influence mechanism of the dynamic characteristics of porous aerostatic bearings[D]. Beijing:China Academy of Engineering Physics, 2018:5-15 (in Chinese). [63] 赵睿. 多孔质气体静压轴承材料三维重构研究及其内流场分析[D]. 成都:电子科技大学, 2019:30-43. ZHAO R. Research on 3D reconstruction of porous aerostatic bearing material and analysis internal flow field[D]. Chengdu:University of Electronic Science and Technology of China, 2019:30-43 (in Chinese). [64] ZHU S Y, CHENG J, QIAO Z H, et al. High temperature solid-lubricating materials:a review[J]. Tribology International, 2019, 133(5):206-23. [65] GROSS W A. Gas bearings:A survey[J]. Wear, 1963, 6(6):423-43. [66] SAMANTA P, MURMU N C, KHONSARI M M. The evolution of foil bearing technology[J]. Tribology International, 2019, 135:305-323. [67] AGRAWAL G L. Foil air/gas bearing technology-an overview[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, 2014 [68] HESHMAT H, WALTON II J F, NICHOLSON B D. Ultra-high temperature compliant foil bearings-the journey to 870℃ and application in gas turbine engines:experiment[C]//Proceedings of ASME Turbo Expo 2018:Turbine Technical Conference and Exposition, 2018 [69] 易家明, 徐学兰. 多孔质静压气体轴承材料的研究[J]. 轴承, 1985, 62(1):36-37. YI J M, XU X L, Research on the material of porous aerostatic bearing[J]. Bearings, 1985, 62(1):36-37 (in Chinese). [70] LEE C C, YOU H I. Geometrical design considerations on externally pressurized porous gas bearings[J]. Tribology Transactions, 2010, 53(3):386-391. [71] LEE C C, YOU H I. Characteristics of externally pressurized porous gas bearings considering structure permeability[J]. Tribology Transactions, 2009, 52(6):768-776. [72] CUI H L, WANG Y, YUE X B, et al. Numerical analysis of the dynamic performance of aerostatic thrust bearings with different restrictors[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2019, 233(3):406-423. [73] IRMAY S. On the theoretical derivation of Darcy and Forchheimer formulas[J]. Transactions of American Geophysical Union, 1958, 39(4):702. [74] COLLINS R E. Flow of fluids through porous materials[M]. 1961:22-25. [75] BHATTACHARJEE B, CHAKRABORTI P, CHOUDHURI D. Influence of the gas lubrication on double layered porous journal bearing[C]//An International Conference on Tribology, TRIBOINDIA-2018, 2018:30-34. [76] SAN ANDRÉS L, JEUNG S-H, ROHMER M, et al. Experimental assessment of drag and rotordynamic response for a porous type gas bearing[C]//Proceedings of the 2015 STLE Annual Meeting & Exhibition, 2015:17-21. [77] MIYATAKE M, YOSHIMOTO S, SATO J. Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2006, 220(2):95-103. [78] 霍彩娇. 多孔质静动压混合气体轴承特性理论与实验研究[D]. 长沙:湖南大学, 2017:86-90. HUO C J. The theroretical and experiment study of hybrid porous journal gas bearing[D]. Changsha:Hunan University, 2017:86-90 (in Chinese). [79] LIU W H, FENG K, HUO Y W, et al. Measurements of the rotordynamic response of a rotor supported on porous type gas bearing[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(10):102501. [80] VOLFKOVICH Y M, FILIPPOV A N, BAGOTSKY V S. Structural properties of porous materials and powders used in different fields of science and technology[M]. London:Springer, 2014:32-40. [81] HAMDAN M A, AL-ASSAF A H, AL-NIMR M A. The effect of slip velocity and temperature jump on the hydrodynamic and thermal behaviors of MHD forced convection flows in horizontal microchannels[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2016, 40(2):95-103. [82] AKBARI M, GHASEMI M. A novel kinetic-based slip velocity boundary condition suitable for compressible gas flows in micro-/nanochannels[J]. Acta Mechanica, 2018, 229(11):4471-4484. [83] ZHANG X B, DING S T, DU F R, et al. Investigation into gas lubrication performance of porous gas bearing considering velocity slip boundary condition[J/OL]. Friction,(2021-6-5)[2021-6-20]. https://doi.org/10.1007/s40544-021-0503-7. [84] SOME S, GUHA S K. Linear stability analysis of double-layered porous journal bearings under coupled-stress lubrication with slip flow and percolation effect of additives[J]. Industrial Lubrication and Tribology, 2019, 71(3):447-458. [85] RAO T V V L N, RANI A M A, AWANG M, et al. Stability analysis of double porous and surface porous layer journal bearing[J]. Tribology-Materials, Surfaces & Interfaces, 2016, 10(1):19-25. [86] 霍彦伟. 多孔质静压气体轴承的温度特性及转子动力学实验研究[D]. 长沙:湖南大学, 2017:70-90. HUO Y W. Thermal characteristic analysisi and rotordynamic experimental study of aerostatic porous journal bearings[D]. Changsha:Hunan University, 2017:70-90 (in Chinese). [87] ZHANG D Y, GAO B, HONG J, et al. Experimental investigation on dynamic response of flat blades with underplatform dampers[J]. Chinese Journal of Aeronautics, 2019, 32(12):2667-2678. [88] SAHA N, MAJUMDAR B C. Study of externally-pressurized gas-lubricated two-layered porous journal bearings:a steady state analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2002, 216(3):151-158. [89] 王继尧, 龙威, 吴蜜蜜, 等. 载荷分布对空气静压轴承振动特性的实验[J]. 航空学报, 2020, 41(8):223679. WANG J Y, LONG W, WU M M, et al. Experiment of load distribution on micro-vibration characteristics of aerostatic bearings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223679(in Chinese). [90] 邢航. 自润滑轴承检测台控制系统的设计与研究[D]. 哈尔滨:哈尔滨理工大学, 2015:78-90. XING H. Design and research of control system of self-lubricating bearing test bench[D]. Harbin:Harbin University of Science and Technology, 2015:78-90 (in Chinese). [91] XU Z, JI F Z, DING S T, et al. Effect of scavenge port angles on flow distribution and performance of swirl-loop scavenging in 2-stroke aircraft diesel engine[J]. Chinese Journal of Aeronautics, 2021, 34(3):105-117. [92] 王京锋, 刘景林, 许卫刚. 动压气体轴承陀螺电机技术发展综述[J]. 微电机, 2016, 49(3):90-94. WANG J F, LIU J L, XU W G. Development and application of technology of dynamic hydrodynamic gas bearing gyroscope motor[J]. Micromotors, 2016, 49(3):90-94 (in Chinese). [93] ZHOU Y, SHAO L T, ZHANG C, et al. Numerical and experimental investigation on dynamic performance of bump foil journal bearing based on journal orbit[J]. Chinese Journal of Aeronautics, 2021, 34(2):586-600. |